module Algorithmic.Evaluation where
open import Data.Nat using (ℕ;zero;suc) open import Relation.Binary.PropositionalEquality using (refl) open import Utils using (*;Either;inj₁;RuntimeError;return) open RuntimeError open import Type using (∅) open import Type.BetaNormal using (_⊢Nf⋆_) open import Algorithmic using (_⊢_;∅) open _⊢_ open import Algorithmic.ReductionEC using (Value;Error;_—↠_;_—→_;E-error) open import Algorithmic.ReductionEC.Progress using (Progress;done;progress;step) open _—↠_
As previously, gas is specified by a natural number.
data Gas : Set where gas : ℕ → Gas
When our evaluator returns a term N, it will either give evidence that
N is a value or indicate that it ran out of gas.
data Finished {A : ∅ ⊢Nf⋆ *} : (N : ∅ ⊢ A) → Set where
done : ∀ N →
Value N
----------
→ Finished N
out-of-gas : ∀{N} →
----------
Finished N
error : {L : ∅ ⊢ A} → Error L → Finished L
-- is this actually possible?
-- neutral : {L : ∅ ⊢ A} → Neutral L → Finished L
Given a term L of type A, the evaluator will, for some N, return
Ma reduction sequence from L to N and an indication of whether
reduction finished.
data Steps : ∀ {A : ∅ ⊢Nf⋆ *} → ∅ ⊢ A → Set where
steps : {A : ∅ ⊢Nf⋆ *} {L N : ∅ ⊢ A}
→ L —↠ N
→ Finished N
----------
→ Steps L
eval—→ : ∀{A : ∅ ⊢Nf⋆ *} → {t t' : ∅ ⊢ A} → t —→ t' →
Steps t' → Steps t
eval—→ p (steps ps q) = steps (trans—↠ p ps) q
The evaluator takes gas and a term and returns the corresponding steps.
eval : ∀ {A : ∅ ⊢Nf⋆ *} → Gas → (M : ∅ ⊢ A) → Steps M
evalProg : ∀{A : ∅ ⊢Nf⋆ *} → Gas → {t : ∅ ⊢ A} → Progress t → Steps t
eval (gas zero) M = steps refl—↠ out-of-gas
eval (gas (suc n)) M = evalProg (gas n) (progress M)
evalProg g (step {N = .(error _)} (_—→_.ruleErr Algorithmic.ReductionEC.[] refl)) = steps refl—↠ (error E-error)
evalProg g (step {N = t'} p) = eval—→ p (eval g t')
evalProg g (done VM) = steps refl—↠ (done _ VM)
stepper : {A : ∅ ⊢Nf⋆ *} → ∅ ⊢ A → ℕ → Either RuntimeError (∅ ⊢ A)
stepper {A} t n with eval (gas n) t
... | steps x (done t' v) = return t'
... | steps x out-of-gas = inj₁ gasError
... | steps x (error _) = return (error A)