{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE NoMonomorphismRestriction #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}

{-# OPTIONS_GHC -Wno-overlapping-patterns #-}

module MAlonzo.Code.Algebra.Construct.NaturalChoice.MinMaxOp where

import MAlonzo.RTE (coe, erased, AgdaAny, addInt, subInt, mulInt,
                    quotInt, remInt, geqInt, ltInt, eqInt, add64, sub64, mul64, quot64,
                    rem64, lt64, eq64, word64FromNat, word64ToNat)
import qualified MAlonzo.RTE
import qualified Data.Text
import qualified MAlonzo.Code.Agda.Builtin.Sigma
import qualified MAlonzo.Code.Agda.Primitive
import qualified MAlonzo.Code.Algebra.Bundles
import qualified MAlonzo.Code.Algebra.Bundles.Raw
import qualified MAlonzo.Code.Algebra.Consequences.Setoid
import qualified MAlonzo.Code.Algebra.Construct.NaturalChoice.Base
import qualified MAlonzo.Code.Algebra.Construct.NaturalChoice.MaxOp
import qualified MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp
import qualified MAlonzo.Code.Algebra.Structures
import qualified MAlonzo.Code.Data.Sum.Base
import qualified MAlonzo.Code.Function.Base
import qualified MAlonzo.Code.Relation.Binary.Bundles
import qualified MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd
import qualified MAlonzo.Code.Relation.Binary.Reasoning.Base.Double
import qualified MAlonzo.Code.Relation.Binary.Reasoning.Syntax
import qualified MAlonzo.Code.Relation.Binary.Structures

-- Algebra.Construct.NaturalChoice.MinMaxOp._._≈_
d__'8776'__24 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> ()
d__'8776'__24 :: T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> ()
d__'8776'__24 = T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> ()
forall a. a
erased
-- Algebra.Construct.NaturalChoice.MinMaxOp._._≲_
d__'8818'__26 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> ()
d__'8818'__26 :: T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> ()
d__'8818'__26 = T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> ()
forall a. a
erased
-- Algebra.Construct.NaturalChoice.MinMaxOp._._⊓_
d__'8851'__90 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny
d__'8851'__90 :: T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
d__'8851'__90 ~T_TotalPreorder_222
v0 T_MinOperator_98
v1 ~T_MaxOperator_128
v2 = T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
du__'8851'__90 T_MinOperator_98
v1
du__'8851'__90 ::
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> AgdaAny -> AgdaAny
du__'8851'__90 :: T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
du__'8851'__90 T_MinOperator_98
v0
  = (T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
      (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v0)
-- Algebra.Construct.NaturalChoice.MinMaxOp._._Absorbs_
d__Absorbs__106 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  (AgdaAny -> AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny) -> ()
d__Absorbs__106 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> ()
d__Absorbs__106 = ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> ()
forall a. a
erased
-- Algebra.Construct.NaturalChoice.MinMaxOp._._DistributesOver_
d__DistributesOver__108 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  (AgdaAny -> AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny) -> ()
d__DistributesOver__108 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> ()
d__DistributesOver__108 = ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> ()
forall a. a
erased
-- Algebra.Construct.NaturalChoice.MinMaxOp._._DistributesOverʳ_
d__DistributesOver'691'__110 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  (AgdaAny -> AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny) -> ()
d__DistributesOver'691'__110 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> ()
d__DistributesOver'691'__110 = ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> ()
forall a. a
erased
-- Algebra.Construct.NaturalChoice.MinMaxOp._._DistributesOverˡ_
d__DistributesOver'737'__112 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  (AgdaAny -> AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny) -> ()
d__DistributesOver'737'__112 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> ()
d__DistributesOver'737'__112 = ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> ()
forall a. a
erased
-- Algebra.Construct.NaturalChoice.MinMaxOp._.Absorptive
d_Absorptive_118 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  (AgdaAny -> AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny) -> ()
d_Absorptive_118 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> ()
d_Absorptive_118 = ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> ()
forall a. a
erased
-- Algebra.Construct.NaturalChoice.MinMaxOp._.mono-≤-distrib-⊓
d_mono'45''8804''45'distrib'45''8851'_2948 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  (AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  AgdaAny -> AgdaAny -> AgdaAny
d_mono'45''8804''45'distrib'45''8851'_2948 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_mono'45''8804''45'distrib'45''8851'_2948 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98
-> (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_mono'45''8804''45'distrib'45''8851'_2948 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_mono'45''8804''45'distrib'45''8851'_2948 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  (AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  AgdaAny -> AgdaAny -> AgdaAny
du_mono'45''8804''45'distrib'45''8851'_2948 :: T_TotalPreorder_222
-> T_MinOperator_98
-> (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_mono'45''8804''45'distrib'45''8851'_2948 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> (AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_mono'45''8804''45'distrib'45''8851'_3114
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.x≤y⇒x⊓z≤y
d_x'8804'y'8658'x'8851'z'8804'y_2950 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8804'y'8658'x'8851'z'8804'y_2950 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8804'y'8658'x'8851'z'8804'y_2950 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_x'8804'y'8658'x'8851'z'8804'y_2950 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_x'8804'y'8658'x'8851'z'8804'y_2950 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'y'8658'x'8851'z'8804'y_2950 :: T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_x'8804'y'8658'x'8851'z'8804'y_2950 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_x'8804'y'8658'x'8851'z'8804'y_3160
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.x≤y⇒z⊓x≤y
d_x'8804'y'8658'z'8851'x'8804'y_2952 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8804'y'8658'z'8851'x'8804'y_2952 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8804'y'8658'z'8851'x'8804'y_2952 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_x'8804'y'8658'z'8851'x'8804'y_2952 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_x'8804'y'8658'z'8851'x'8804'y_2952 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'y'8658'z'8851'x'8804'y_2952 :: T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_x'8804'y'8658'z'8851'x'8804'y_2952 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_x'8804'y'8658'z'8851'x'8804'y_3172
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.x≤y⊓z⇒x≤y
d_x'8804'y'8851'z'8658'x'8804'y_2954 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8804'y'8851'z'8658'x'8804'y_2954 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8804'y'8851'z'8658'x'8804'y_2954 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_x'8804'y'8851'z'8658'x'8804'y_2954 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_x'8804'y'8851'z'8658'x'8804'y_2954 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'y'8851'z'8658'x'8804'y_2954 :: T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_x'8804'y'8851'z'8658'x'8804'y_2954 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_x'8804'y'8851'z'8658'x'8804'y_3184
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.x≤y⊓z⇒x≤z
d_x'8804'y'8851'z'8658'x'8804'z_2956 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8804'y'8851'z'8658'x'8804'z_2956 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8804'y'8851'z'8658'x'8804'z_2956 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_x'8804'y'8851'z'8658'x'8804'z_2956 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_x'8804'y'8851'z'8658'x'8804'z_2956 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'y'8851'z'8658'x'8804'z_2956 :: T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_x'8804'y'8851'z'8658'x'8804'z_2956 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_x'8804'y'8851'z'8658'x'8804'z_3198
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.x⊓y≈x⇒x≤y
d_x'8851'y'8776'x'8658'x'8804'y_2958 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8851'y'8776'x'8658'x'8804'y_2958 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8851'y'8776'x'8658'x'8804'y_2958 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8776'x'8658'x'8804'y_2958 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_x'8851'y'8776'x'8658'x'8804'y_2958 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8776'x'8658'x'8804'y_2958 :: T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8776'x'8658'x'8804'y_2958 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_x'8851'y'8776'x'8658'x'8804'y_3068
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.x⊓y≈y⇒y≤x
d_x'8851'y'8776'y'8658'y'8804'x_2960 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8851'y'8776'y'8658'y'8804'x_2960 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8851'y'8776'y'8658'y'8804'x_2960 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8776'y'8658'y'8804'x_2960 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_x'8851'y'8776'y'8658'y'8804'x_2960 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8776'y'8658'y'8804'x_2960 :: T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8776'y'8658'y'8804'x_2960 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_x'8851'y'8776'y'8658'y'8804'x_3100
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.x⊓y≤x
d_x'8851'y'8804'x_2962 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny
d_x'8851'y'8804'x_2962 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8851'y'8804'x_2962 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8804'x_2962 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_x'8851'y'8804'x_2962 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8804'x_2962 :: T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8804'x_2962 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_x'8851'y'8804'x_2808
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.x⊓y≤y
d_x'8851'y'8804'y_2964 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny
d_x'8851'y'8804'y_2964 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8851'y'8804'y_2964 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8804'y_2964 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_x'8851'y'8804'y_2964 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8804'y_2964 :: T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8804'y_2964 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_x'8851'y'8804'y_2834
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-assoc
d_'8851''45'assoc_2966 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'assoc_2966 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'assoc_2966 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'assoc_2966 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'assoc_2966 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'assoc_2966 :: T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'assoc_2966 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'assoc_2944
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-band
d_'8851''45'band_2968 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Bundles.T_Band_596
d_'8851''45'band_2968 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_Band_596
d_'8851''45'band_2968 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222 -> T_MinOperator_98 -> T_Band_596
du_'8851''45'band_2968 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'band_2968 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Bundles.T_Band_596
du_'8851''45'band_2968 :: T_TotalPreorder_222 -> T_MinOperator_98 -> T_Band_596
du_'8851''45'band_2968 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222 -> T_MinOperator_98 -> T_Band_596)
-> AgdaAny -> AgdaAny -> T_Band_596
forall a b. a -> b
coe
      T_TotalPreorder_222 -> T_MinOperator_98 -> T_Band_596
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'band_3052
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-comm
d_'8851''45'comm_2970 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'comm_2970 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'comm_2970 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'comm_2970 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'comm_2970 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'comm_2970 :: T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'comm_2970 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'comm_2856
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-commutativeSemigroup
d_'8851''45'commutativeSemigroup_2972 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Bundles.T_CommutativeSemigroup_662
d_'8851''45'commutativeSemigroup_2972 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_CommutativeSemigroup_662
d_'8851''45'commutativeSemigroup_2972 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98 -> T_CommutativeSemigroup_662
du_'8851''45'commutativeSemigroup_2972 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'commutativeSemigroup_2972 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Bundles.T_CommutativeSemigroup_662
du_'8851''45'commutativeSemigroup_2972 :: T_TotalPreorder_222
-> T_MinOperator_98 -> T_CommutativeSemigroup_662
du_'8851''45'commutativeSemigroup_2972 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98 -> T_CommutativeSemigroup_662)
-> AgdaAny -> AgdaAny -> T_CommutativeSemigroup_662
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98 -> T_CommutativeSemigroup_662
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'commutativeSemigroup_3054
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-cong
d_'8851''45'cong_2974 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'cong_2974 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'cong_2974 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'cong_2974 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'cong_2974 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'cong_2974 :: T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'cong_2974 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'cong_2930
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-congʳ
d_'8851''45'cong'691'_2976 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'cong'691'_2976 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'cong'691'_2976 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'cong'691'_2976 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'cong'691'_2976 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'cong'691'_2976 :: T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'cong'691'_2976 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'cong'691'_2920
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-congˡ
d_'8851''45'cong'737'_2978 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'cong'737'_2978 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'cong'737'_2978 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'cong'737'_2978 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'cong'737'_2978 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'cong'737'_2978 :: T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'cong'737'_2978 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'cong'737'_2882
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-glb
d_'8851''45'glb_2980 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'glb_2980 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'glb_2980 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'glb_2980 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'glb_2980 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'glb_2980 :: T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'glb_2980 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'glb_3278
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-idem
d_'8851''45'idem_2982 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny
d_'8851''45'idem_2982 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
d_'8851''45'idem_2982 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222 -> T_MinOperator_98 -> AgdaAny -> AgdaAny
du_'8851''45'idem_2982 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'idem_2982 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> AgdaAny
du_'8851''45'idem_2982 :: T_TotalPreorder_222 -> T_MinOperator_98 -> AgdaAny -> AgdaAny
du_'8851''45'idem_2982 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222 -> T_MinOperator_98 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222 -> T_MinOperator_98 -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'idem_2984
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-identity
d_'8851''45'identity_2984 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny ->
  (AgdaAny -> AgdaAny) -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8851''45'identity_2984 :: T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_Σ_14
d_'8851''45'identity_2984 ~T_TotalPreorder_222
v0 T_MinOperator_98
v1 ~T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny -> AgdaAny
v4
  = T_MinOperator_98 -> AgdaAny -> (AgdaAny -> AgdaAny) -> T_Σ_14
du_'8851''45'identity_2984 T_MinOperator_98
v1 AgdaAny
v3 AgdaAny -> AgdaAny
v4
du_'8851''45'identity_2984 ::
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny ->
  (AgdaAny -> AgdaAny) -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8851''45'identity_2984 :: T_MinOperator_98 -> AgdaAny -> (AgdaAny -> AgdaAny) -> T_Σ_14
du_'8851''45'identity_2984 T_MinOperator_98
v0 AgdaAny
v1 AgdaAny -> AgdaAny
v2
  = (AgdaAny -> AgdaAny -> T_Σ_14) -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Agda.Builtin.Sigma.C__'44'__32
      ((AgdaAny -> AgdaAny) -> AgdaAny
forall a b. a -> b
coe
         (\ AgdaAny
v3 ->
            (T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
              T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8805'y'8658'x'8851'y'8776'y_126
              T_MinOperator_98
v0 AgdaAny
v1 AgdaAny
v3 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v2 AgdaAny
v3)))
      ((AgdaAny -> AgdaAny) -> AgdaAny
forall a b. a -> b
coe
         (\ AgdaAny
v3 ->
            (T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
              T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8804'y'8658'x'8851'y'8776'x_120
              T_MinOperator_98
v0 AgdaAny
v3 AgdaAny
v1 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v2 AgdaAny
v3)))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-identityʳ
d_'8851''45'identity'691'_2986 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
d_'8851''45'identity'691'_2986 :: T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
d_'8851''45'identity'691'_2986 ~T_TotalPreorder_222
v0 T_MinOperator_98
v1 ~T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny -> AgdaAny
v4 AgdaAny
v5
  = T_MinOperator_98
-> AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'identity'691'_2986 T_MinOperator_98
v1 AgdaAny
v3 AgdaAny -> AgdaAny
v4 AgdaAny
v5
du_'8851''45'identity'691'_2986 ::
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'identity'691'_2986 :: T_MinOperator_98
-> AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'identity'691'_2986 T_MinOperator_98
v0 AgdaAny
v1 AgdaAny -> AgdaAny
v2 AgdaAny
v3
  = (T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8804'y'8658'x'8851'y'8776'x_120
      T_MinOperator_98
v0 AgdaAny
v3 AgdaAny
v1 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v2 AgdaAny
v3)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-identityˡ
d_'8851''45'identity'737'_2988 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
d_'8851''45'identity'737'_2988 :: T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
d_'8851''45'identity'737'_2988 ~T_TotalPreorder_222
v0 T_MinOperator_98
v1 ~T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny -> AgdaAny
v4 AgdaAny
v5
  = T_MinOperator_98
-> AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'identity'737'_2988 T_MinOperator_98
v1 AgdaAny
v3 AgdaAny -> AgdaAny
v4 AgdaAny
v5
du_'8851''45'identity'737'_2988 ::
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'identity'737'_2988 :: T_MinOperator_98
-> AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'identity'737'_2988 T_MinOperator_98
v0 AgdaAny
v1 AgdaAny -> AgdaAny
v2 AgdaAny
v3
  = (T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8805'y'8658'x'8851'y'8776'y_126
      T_MinOperator_98
v0 AgdaAny
v1 AgdaAny
v3 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v2 AgdaAny
v3)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-isBand
d_'8851''45'isBand_2990 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Structures.T_IsBand_508
d_'8851''45'isBand_2990 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_IsBand_508
d_'8851''45'isBand_2990 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsBand_508
du_'8851''45'isBand_2990 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'isBand_2990 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Structures.T_IsBand_508
du_'8851''45'isBand_2990 :: T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsBand_508
du_'8851''45'isBand_2990 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsBand_508)
-> AgdaAny -> AgdaAny -> T_IsBand_508
forall a b. a -> b
coe
      T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsBand_508
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'isBand_3034
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-isCommutativeSemigroup
d_'8851''45'isCommutativeSemigroup_2992 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Structures.T_IsCommutativeSemigroup_548
d_'8851''45'isCommutativeSemigroup_2992 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_IsCommutativeSemigroup_548
d_'8851''45'isCommutativeSemigroup_2992 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98 -> T_IsCommutativeSemigroup_548
du_'8851''45'isCommutativeSemigroup_2992 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'isCommutativeSemigroup_2992 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Structures.T_IsCommutativeSemigroup_548
du_'8851''45'isCommutativeSemigroup_2992 :: T_TotalPreorder_222
-> T_MinOperator_98 -> T_IsCommutativeSemigroup_548
du_'8851''45'isCommutativeSemigroup_2992 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98 -> T_IsCommutativeSemigroup_548)
-> AgdaAny -> AgdaAny -> T_IsCommutativeSemigroup_548
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98 -> T_IsCommutativeSemigroup_548
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'isCommutativeSemigroup_3036
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-isMagma
d_'8851''45'isMagma_2994 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Structures.T_IsMagma_176
d_'8851''45'isMagma_2994 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_IsMagma_176
d_'8851''45'isMagma_2994 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsMagma_176
du_'8851''45'isMagma_2994 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'isMagma_2994 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Structures.T_IsMagma_176
du_'8851''45'isMagma_2994 :: T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsMagma_176
du_'8851''45'isMagma_2994 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsMagma_176)
-> AgdaAny -> AgdaAny -> T_IsMagma_176
forall a b. a -> b
coe
      T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsMagma_176
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'isMagma_3030
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-isMonoid
d_'8851''45'isMonoid_2996 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny ->
  (AgdaAny -> AgdaAny) ->
  MAlonzo.Code.Algebra.Structures.T_IsMonoid_686
d_'8851''45'isMonoid_2996 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_IsMonoid_686
d_'8851''45'isMonoid_2996 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_IsMonoid_686
du_'8851''45'isMonoid_2996 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'isMonoid_2996 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny ->
  (AgdaAny -> AgdaAny) ->
  MAlonzo.Code.Algebra.Structures.T_IsMonoid_686
du_'8851''45'isMonoid_2996 :: T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_IsMonoid_686
du_'8851''45'isMonoid_2996 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> (AgdaAny -> AgdaAny)
 -> T_IsMonoid_686)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_IsMonoid_686
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_IsMonoid_686
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'isMonoid_3042
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-isSelectiveMagma
d_'8851''45'isSelectiveMagma_2998 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Structures.T_IsSelectiveMagma_436
d_'8851''45'isSelectiveMagma_2998 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_IsSelectiveMagma_436
d_'8851''45'isSelectiveMagma_2998 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsSelectiveMagma_436
du_'8851''45'isSelectiveMagma_2998 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'isSelectiveMagma_2998 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Structures.T_IsSelectiveMagma_436
du_'8851''45'isSelectiveMagma_2998 :: T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsSelectiveMagma_436
du_'8851''45'isSelectiveMagma_2998 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsSelectiveMagma_436)
-> AgdaAny -> AgdaAny -> T_IsSelectiveMagma_436
forall a b. a -> b
coe
      T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsSelectiveMagma_436
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'isSelectiveMagma_3038
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-isSemigroup
d_'8851''45'isSemigroup_3000 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Structures.T_IsSemigroup_472
d_'8851''45'isSemigroup_3000 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_IsSemigroup_472
d_'8851''45'isSemigroup_3000 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsSemigroup_472
du_'8851''45'isSemigroup_3000 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'isSemigroup_3000 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Structures.T_IsSemigroup_472
du_'8851''45'isSemigroup_3000 :: T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsSemigroup_472
du_'8851''45'isSemigroup_3000 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsSemigroup_472)
-> AgdaAny -> AgdaAny -> T_IsSemigroup_472
forall a b. a -> b
coe
      T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsSemigroup_472
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'isSemigroup_3032
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-magma
d_'8851''45'magma_3002 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Bundles.T_Magma_68
d_'8851''45'magma_3002 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_Magma_68
d_'8851''45'magma_3002 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222 -> T_MinOperator_98 -> T_Magma_68
du_'8851''45'magma_3002 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'magma_3002 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Bundles.T_Magma_68
du_'8851''45'magma_3002 :: T_TotalPreorder_222 -> T_MinOperator_98 -> T_Magma_68
du_'8851''45'magma_3002 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222 -> T_MinOperator_98 -> T_Magma_68)
-> AgdaAny -> AgdaAny -> T_Magma_68
forall a b. a -> b
coe
      T_TotalPreorder_222 -> T_MinOperator_98 -> T_Magma_68
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'magma_3048
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-mono-≤
d_'8851''45'mono'45''8804'_3004 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'mono'45''8804'_3004 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'mono'45''8804'_3004 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'mono'45''8804'_3004 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'mono'45''8804'_3004 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'mono'45''8804'_3004 :: T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'mono'45''8804'_3004 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'mono'45''8804'_3206
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-monoid
d_'8851''45'monoid_3006 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny ->
  (AgdaAny -> AgdaAny) -> MAlonzo.Code.Algebra.Bundles.T_Monoid_882
d_'8851''45'monoid_3006 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_Monoid_882
d_'8851''45'monoid_3006 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_Monoid_882
du_'8851''45'monoid_3006 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'monoid_3006 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny ->
  (AgdaAny -> AgdaAny) -> MAlonzo.Code.Algebra.Bundles.T_Monoid_882
du_'8851''45'monoid_3006 :: T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_Monoid_882
du_'8851''45'monoid_3006 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> (AgdaAny -> AgdaAny)
 -> T_Monoid_882)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_Monoid_882
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_Monoid_882
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'monoid_3060
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-monoʳ-≤
d_'8851''45'mono'691''45''8804'_3008 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'mono'691''45''8804'_3008 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'mono'691''45''8804'_3008 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'mono'691''45''8804'_3008 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'mono'691''45''8804'_3008 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'mono'691''45''8804'_3008 :: T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'mono'691''45''8804'_3008 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'mono'691''45''8804'_3266
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-monoˡ-≤
d_'8851''45'mono'737''45''8804'_3010 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'mono'737''45''8804'_3010 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'mono'737''45''8804'_3010 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'mono'737''45''8804'_3010 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'mono'737''45''8804'_3010 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'mono'737''45''8804'_3010 :: T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'mono'737''45''8804'_3010 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'mono'737''45''8804'_3256
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-rawMagma
d_'8851''45'rawMagma_3012 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Bundles.Raw.T_RawMagma_36
d_'8851''45'rawMagma_3012 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_RawMagma_36
d_'8851''45'rawMagma_3012 ~()
v0 ~()
v1 ~()
v2 ~T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_MinOperator_98 -> T_RawMagma_36
du_'8851''45'rawMagma_3012 T_MinOperator_98
v4
du_'8851''45'rawMagma_3012 ::
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Bundles.Raw.T_RawMagma_36
du_'8851''45'rawMagma_3012 :: T_MinOperator_98 -> T_RawMagma_36
du_'8851''45'rawMagma_3012 T_MinOperator_98
v0
  = (T_MinOperator_98 -> T_RawMagma_36) -> AgdaAny -> T_RawMagma_36
forall a b. a -> b
coe
      T_MinOperator_98 -> T_RawMagma_36
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'rawMagma_3046
      (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v0)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-sel
d_'8851''45'sel_3014 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Data.Sum.Base.T__'8846'__30
d_'8851''45'sel_3014 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> T__'8846'__30
d_'8851''45'sel_3014 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> T__'8846'__30
du_'8851''45'sel_3014 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'sel_3014 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Data.Sum.Base.T__'8846'__30
du_'8851''45'sel_3014 :: T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> T__'8846'__30
du_'8851''45'sel_3014 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98 -> AgdaAny -> AgdaAny -> T__'8846'__30)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> T__'8846'__30
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> T__'8846'__30
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'sel_2988
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-selectiveMagma
d_'8851''45'selectiveMagma_3016 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Bundles.T_SelectiveMagma_122
d_'8851''45'selectiveMagma_3016 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_SelectiveMagma_122
d_'8851''45'selectiveMagma_3016 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222 -> T_MinOperator_98 -> T_SelectiveMagma_122
du_'8851''45'selectiveMagma_3016 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'selectiveMagma_3016 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Bundles.T_SelectiveMagma_122
du_'8851''45'selectiveMagma_3016 :: T_TotalPreorder_222 -> T_MinOperator_98 -> T_SelectiveMagma_122
du_'8851''45'selectiveMagma_3016 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222 -> T_MinOperator_98 -> T_SelectiveMagma_122)
-> AgdaAny -> AgdaAny -> T_SelectiveMagma_122
forall a b. a -> b
coe
      T_TotalPreorder_222 -> T_MinOperator_98 -> T_SelectiveMagma_122
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'selectiveMagma_3056
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-semigroup
d_'8851''45'semigroup_3018 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Bundles.T_Semigroup_536
d_'8851''45'semigroup_3018 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_Semigroup_536
d_'8851''45'semigroup_3018 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222 -> T_MinOperator_98 -> T_Semigroup_536
du_'8851''45'semigroup_3018 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'semigroup_3018 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Bundles.T_Semigroup_536
du_'8851''45'semigroup_3018 :: T_TotalPreorder_222 -> T_MinOperator_98 -> T_Semigroup_536
du_'8851''45'semigroup_3018 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222 -> T_MinOperator_98 -> T_Semigroup_536)
-> AgdaAny -> AgdaAny -> T_Semigroup_536
forall a b. a -> b
coe
      T_TotalPreorder_222 -> T_MinOperator_98 -> T_Semigroup_536
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'semigroup_3050
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-triangulate
d_'8851''45'triangulate_3020 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'triangulate_3020 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'triangulate_3020 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 ~T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'triangulate_3020 T_TotalPreorder_222
v3 T_MinOperator_98
v4
du_'8851''45'triangulate_3020 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'triangulate_3020 :: T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'triangulate_3020 T_TotalPreorder_222
v0 T_MinOperator_98
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'triangulate_3292
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-zero
d_'8851''45'zero_3022 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny ->
  (AgdaAny -> AgdaAny) -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8851''45'zero_3022 :: T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_Σ_14
d_'8851''45'zero_3022 ~T_TotalPreorder_222
v0 T_MinOperator_98
v1 ~T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny -> AgdaAny
v4
  = T_MinOperator_98 -> AgdaAny -> (AgdaAny -> AgdaAny) -> T_Σ_14
du_'8851''45'zero_3022 T_MinOperator_98
v1 AgdaAny
v3 AgdaAny -> AgdaAny
v4
du_'8851''45'zero_3022 ::
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny ->
  (AgdaAny -> AgdaAny) -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8851''45'zero_3022 :: T_MinOperator_98 -> AgdaAny -> (AgdaAny -> AgdaAny) -> T_Σ_14
du_'8851''45'zero_3022 T_MinOperator_98
v0 AgdaAny
v1 AgdaAny -> AgdaAny
v2
  = (AgdaAny -> AgdaAny -> T_Σ_14) -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Agda.Builtin.Sigma.C__'44'__32
      ((AgdaAny -> AgdaAny) -> AgdaAny
forall a b. a -> b
coe
         (\ AgdaAny
v3 ->
            (T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
              T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8804'y'8658'x'8851'y'8776'x_120
              T_MinOperator_98
v0 AgdaAny
v1 AgdaAny
v3 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v2 AgdaAny
v3)))
      ((AgdaAny -> AgdaAny) -> AgdaAny
forall a b. a -> b
coe
         (\ AgdaAny
v3 ->
            (T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
              T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8805'y'8658'x'8851'y'8776'y_126
              T_MinOperator_98
v0 AgdaAny
v3 AgdaAny
v1 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v2 AgdaAny
v3)))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-zeroʳ
d_'8851''45'zero'691'_3024 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
d_'8851''45'zero'691'_3024 :: T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
d_'8851''45'zero'691'_3024 ~T_TotalPreorder_222
v0 T_MinOperator_98
v1 ~T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny -> AgdaAny
v4 AgdaAny
v5
  = T_MinOperator_98
-> AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'zero'691'_3024 T_MinOperator_98
v1 AgdaAny
v3 AgdaAny -> AgdaAny
v4 AgdaAny
v5
du_'8851''45'zero'691'_3024 ::
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'zero'691'_3024 :: T_MinOperator_98
-> AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'zero'691'_3024 T_MinOperator_98
v0 AgdaAny
v1 AgdaAny -> AgdaAny
v2 AgdaAny
v3
  = (T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8805'y'8658'x'8851'y'8776'y_126
      T_MinOperator_98
v0 AgdaAny
v3 AgdaAny
v1 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v2 AgdaAny
v3)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-zeroˡ
d_'8851''45'zero'737'_3026 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
d_'8851''45'zero'737'_3026 :: T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
d_'8851''45'zero'737'_3026 ~T_TotalPreorder_222
v0 T_MinOperator_98
v1 ~T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny -> AgdaAny
v4 AgdaAny
v5
  = T_MinOperator_98
-> AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'zero'737'_3026 T_MinOperator_98
v1 AgdaAny
v3 AgdaAny -> AgdaAny
v4 AgdaAny
v5
du_'8851''45'zero'737'_3026 ::
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'zero'737'_3026 :: T_MinOperator_98
-> AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'zero'737'_3026 T_MinOperator_98
v0 AgdaAny
v1 AgdaAny -> AgdaAny
v2 AgdaAny
v3
  = (T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8804'y'8658'x'8851'y'8776'x_120
      T_MinOperator_98
v0 AgdaAny
v1 AgdaAny
v3 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v2 AgdaAny
v3)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.mono-≤-distrib-⊔
d_mono'45''8804''45'distrib'45''8852'_3030 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  (AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  AgdaAny -> AgdaAny -> AgdaAny
d_mono'45''8804''45'distrib'45''8852'_3030 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_mono'45''8804''45'distrib'45''8852'_3030 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_mono'45''8804''45'distrib'45''8852'_3030 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_mono'45''8804''45'distrib'45''8852'_3030 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  (AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  AgdaAny -> AgdaAny -> AgdaAny
du_mono'45''8804''45'distrib'45''8852'_3030 :: T_TotalPreorder_222
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_mono'45''8804''45'distrib'45''8852'_3030 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MaxOperator_128
 -> (AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MaxOp.du_mono'45''8804''45'distrib'45''8852'_182
      (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.x⊓y≤x
d_x'8851'y'8804'x_3032 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny
d_x'8851'y'8804'x_3032 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8851'y'8804'x_3032 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8804'x_3032 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_x'8851'y'8804'x_3032 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8804'x_3032 :: T_TotalPreorder_222
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8804'x_3032 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_x'8851'y'8804'x_2808
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.x≤y⇒x⊓z≤y
d_x'8804'y'8658'x'8851'z'8804'y_3034 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8804'y'8658'x'8851'z'8804'y_3034 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8804'y'8658'x'8851'z'8804'y_3034 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_x'8804'y'8658'x'8851'z'8804'y_3034 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_x'8804'y'8658'x'8851'z'8804'y_3034 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'y'8658'x'8851'z'8804'y_3034 :: T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_x'8804'y'8658'x'8851'z'8804'y_3034 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_x'8804'y'8658'x'8851'z'8804'y_3160
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.x≤y⇒z⊓x≤y
d_x'8804'y'8658'z'8851'x'8804'y_3036 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8804'y'8658'z'8851'x'8804'y_3036 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8804'y'8658'z'8851'x'8804'y_3036 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_x'8804'y'8658'z'8851'x'8804'y_3036 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_x'8804'y'8658'z'8851'x'8804'y_3036 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'y'8658'z'8851'x'8804'y_3036 :: T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_x'8804'y'8658'z'8851'x'8804'y_3036 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_x'8804'y'8658'z'8851'x'8804'y_3172
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.x⊓y≤y
d_x'8851'y'8804'y_3038 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny
d_x'8851'y'8804'y_3038 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8851'y'8804'y_3038 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8804'y_3038 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_x'8851'y'8804'y_3038 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8804'y_3038 :: T_TotalPreorder_222
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8804'y_3038 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_x'8851'y'8804'y_2834
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.x⊓y≈x⇒x≤y
d_x'8851'y'8776'x'8658'x'8804'y_3040 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8851'y'8776'x'8658'x'8804'y_3040 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8851'y'8776'x'8658'x'8804'y_3040 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8776'x'8658'x'8804'y_3040 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_x'8851'y'8776'x'8658'x'8804'y_3040 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8776'x'8658'x'8804'y_3040 :: T_TotalPreorder_222
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8776'x'8658'x'8804'y_3040 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_x'8851'y'8776'x'8658'x'8804'y_3068
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.x⊓y≈y⇒y≤x
d_x'8851'y'8776'y'8658'y'8804'x_3042 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8851'y'8776'y'8658'y'8804'x_3042 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8851'y'8776'y'8658'y'8804'x_3042 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8776'y'8658'y'8804'x_3042 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_x'8851'y'8776'y'8658'y'8804'x_3042 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8776'y'8658'y'8804'x_3042 :: T_TotalPreorder_222
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8776'y'8658'y'8804'x_3042 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_x'8851'y'8776'y'8658'y'8804'x_3100
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.x≤y⊓z⇒x≤y
d_x'8804'y'8851'z'8658'x'8804'y_3044 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8804'y'8851'z'8658'x'8804'y_3044 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8804'y'8851'z'8658'x'8804'y_3044 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_x'8804'y'8851'z'8658'x'8804'y_3044 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_x'8804'y'8851'z'8658'x'8804'y_3044 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'y'8851'z'8658'x'8804'y_3044 :: T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_x'8804'y'8851'z'8658'x'8804'y_3044 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_x'8804'y'8851'z'8658'x'8804'y_3184
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.x≤y⊓z⇒x≤z
d_x'8804'y'8851'z'8658'x'8804'z_3046 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8804'y'8851'z'8658'x'8804'z_3046 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8804'y'8851'z'8658'x'8804'z_3046 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_x'8804'y'8851'z'8658'x'8804'z_3046 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_x'8804'y'8851'z'8658'x'8804'z_3046 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'y'8851'z'8658'x'8804'z_3046 :: T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_x'8804'y'8851'z'8658'x'8804'z_3046 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_x'8804'y'8851'z'8658'x'8804'z_3198
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-assoc
d_'8851''45'assoc_3048 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'assoc_3048 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'assoc_3048 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'assoc_3048 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'assoc_3048 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'assoc_3048 :: T_TotalPreorder_222
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'assoc_3048 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'assoc_2944
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-band
d_'8851''45'band_3050 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Bundles.T_Band_596
d_'8851''45'band_3050 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_Band_596
d_'8851''45'band_3050 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222 -> T_MaxOperator_128 -> T_Band_596
du_'8851''45'band_3050 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'band_3050 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Bundles.T_Band_596
du_'8851''45'band_3050 :: T_TotalPreorder_222 -> T_MaxOperator_128 -> T_Band_596
du_'8851''45'band_3050 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222 -> T_MinOperator_98 -> T_Band_596)
-> AgdaAny -> AgdaAny -> T_Band_596
forall a b. a -> b
coe
      T_TotalPreorder_222 -> T_MinOperator_98 -> T_Band_596
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'band_3052
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-comm
d_'8851''45'comm_3052 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'comm_3052 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'comm_3052 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'comm_3052 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'comm_3052 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'comm_3052 :: T_TotalPreorder_222
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'comm_3052 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'comm_2856
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-commutativeSemigroup
d_'8851''45'commutativeSemigroup_3054 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Bundles.T_CommutativeSemigroup_662
d_'8851''45'commutativeSemigroup_3054 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_CommutativeSemigroup_662
d_'8851''45'commutativeSemigroup_3054 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128 -> T_CommutativeSemigroup_662
du_'8851''45'commutativeSemigroup_3054 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'commutativeSemigroup_3054 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Bundles.T_CommutativeSemigroup_662
du_'8851''45'commutativeSemigroup_3054 :: T_TotalPreorder_222
-> T_MaxOperator_128 -> T_CommutativeSemigroup_662
du_'8851''45'commutativeSemigroup_3054 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98 -> T_CommutativeSemigroup_662)
-> AgdaAny -> AgdaAny -> T_CommutativeSemigroup_662
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98 -> T_CommutativeSemigroup_662
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'commutativeSemigroup_3054
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-cong
d_'8851''45'cong_3056 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'cong_3056 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'cong_3056 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'cong_3056 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'cong_3056 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'cong_3056 :: T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'cong_3056 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'cong_2930
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-congʳ
d_'8851''45'cong'691'_3058 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'cong'691'_3058 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'cong'691'_3058 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'cong'691'_3058 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'cong'691'_3058 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'cong'691'_3058 :: T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'cong'691'_3058 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'cong'691'_2920
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-congˡ
d_'8851''45'cong'737'_3060 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'cong'737'_3060 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'cong'737'_3060 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'cong'737'_3060 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'cong'737'_3060 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'cong'737'_3060 :: T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'cong'737'_3060 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'cong'737'_2882
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-idem
d_'8851''45'idem_3062 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny
d_'8851''45'idem_3062 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
d_'8851''45'idem_3062 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222 -> T_MaxOperator_128 -> AgdaAny -> AgdaAny
du_'8851''45'idem_3062 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'idem_3062 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny
du_'8851''45'idem_3062 :: T_TotalPreorder_222 -> T_MaxOperator_128 -> AgdaAny -> AgdaAny
du_'8851''45'idem_3062 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222 -> T_MinOperator_98 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222 -> T_MinOperator_98 -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'idem_2984
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-identity
d_'8851''45'identity_3064 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny ->
  (AgdaAny -> AgdaAny) -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8851''45'identity_3064 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_Σ_14
d_'8851''45'identity_3064 ~()
v0 ~()
v1 ~()
v2 ~T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny -> AgdaAny
v7
  = T_MaxOperator_128 -> AgdaAny -> (AgdaAny -> AgdaAny) -> T_Σ_14
du_'8851''45'identity_3064 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny -> AgdaAny
v7
du_'8851''45'identity_3064 ::
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny ->
  (AgdaAny -> AgdaAny) -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8851''45'identity_3064 :: T_MaxOperator_128 -> AgdaAny -> (AgdaAny -> AgdaAny) -> T_Σ_14
du_'8851''45'identity_3064 T_MaxOperator_128
v0 AgdaAny
v1 AgdaAny -> AgdaAny
v2
  = (AgdaAny -> AgdaAny -> T_Σ_14) -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Agda.Builtin.Sigma.C__'44'__32
      ((AgdaAny -> AgdaAny) -> AgdaAny
forall a b. a -> b
coe
         (\ AgdaAny
v3 ->
            (T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
              T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8804'y'8658'x'8852'y'8776'y_150
              T_MaxOperator_128
v0 AgdaAny
v1 AgdaAny
v3 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v2 AgdaAny
v3)))
      ((AgdaAny -> AgdaAny) -> AgdaAny
forall a b. a -> b
coe
         (\ AgdaAny
v3 ->
            (T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
              T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8805'y'8658'x'8852'y'8776'x_156
              T_MaxOperator_128
v0 AgdaAny
v3 AgdaAny
v1 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v2 AgdaAny
v3)))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-identityʳ
d_'8851''45'identity'691'_3066 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
d_'8851''45'identity'691'_3066 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
d_'8851''45'identity'691'_3066 ~()
v0 ~()
v1 ~()
v2 ~T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny -> AgdaAny
v7 AgdaAny
v8
  = T_MaxOperator_128
-> AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'identity'691'_3066 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny -> AgdaAny
v7 AgdaAny
v8
du_'8851''45'identity'691'_3066 ::
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'identity'691'_3066 :: T_MaxOperator_128
-> AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'identity'691'_3066 T_MaxOperator_128
v0 AgdaAny
v1 AgdaAny -> AgdaAny
v2 AgdaAny
v3
  = (T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8805'y'8658'x'8852'y'8776'x_156
      T_MaxOperator_128
v0 AgdaAny
v3 AgdaAny
v1 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v2 AgdaAny
v3)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-identityˡ
d_'8851''45'identity'737'_3068 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
d_'8851''45'identity'737'_3068 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
d_'8851''45'identity'737'_3068 ~()
v0 ~()
v1 ~()
v2 ~T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny -> AgdaAny
v7 AgdaAny
v8
  = T_MaxOperator_128
-> AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'identity'737'_3068 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny -> AgdaAny
v7 AgdaAny
v8
du_'8851''45'identity'737'_3068 ::
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'identity'737'_3068 :: T_MaxOperator_128
-> AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'identity'737'_3068 T_MaxOperator_128
v0 AgdaAny
v1 AgdaAny -> AgdaAny
v2 AgdaAny
v3
  = (T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8804'y'8658'x'8852'y'8776'y_150
      T_MaxOperator_128
v0 AgdaAny
v1 AgdaAny
v3 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v2 AgdaAny
v3)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-isBand
d_'8851''45'isBand_3070 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Structures.T_IsBand_508
d_'8851''45'isBand_3070 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_IsBand_508
d_'8851''45'isBand_3070 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222 -> T_MaxOperator_128 -> T_IsBand_508
du_'8851''45'isBand_3070 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'isBand_3070 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Structures.T_IsBand_508
du_'8851''45'isBand_3070 :: T_TotalPreorder_222 -> T_MaxOperator_128 -> T_IsBand_508
du_'8851''45'isBand_3070 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsBand_508)
-> AgdaAny -> AgdaAny -> T_IsBand_508
forall a b. a -> b
coe
      T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsBand_508
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'isBand_3034
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-isCommutativeSemigroup
d_'8851''45'isCommutativeSemigroup_3072 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Structures.T_IsCommutativeSemigroup_548
d_'8851''45'isCommutativeSemigroup_3072 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_IsCommutativeSemigroup_548
d_'8851''45'isCommutativeSemigroup_3072 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128 -> T_IsCommutativeSemigroup_548
du_'8851''45'isCommutativeSemigroup_3072 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'isCommutativeSemigroup_3072 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Structures.T_IsCommutativeSemigroup_548
du_'8851''45'isCommutativeSemigroup_3072 :: T_TotalPreorder_222
-> T_MaxOperator_128 -> T_IsCommutativeSemigroup_548
du_'8851''45'isCommutativeSemigroup_3072 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98 -> T_IsCommutativeSemigroup_548)
-> AgdaAny -> AgdaAny -> T_IsCommutativeSemigroup_548
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98 -> T_IsCommutativeSemigroup_548
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'isCommutativeSemigroup_3036
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-isMagma
d_'8851''45'isMagma_3074 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Structures.T_IsMagma_176
d_'8851''45'isMagma_3074 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_IsMagma_176
d_'8851''45'isMagma_3074 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222 -> T_MaxOperator_128 -> T_IsMagma_176
du_'8851''45'isMagma_3074 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'isMagma_3074 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Structures.T_IsMagma_176
du_'8851''45'isMagma_3074 :: T_TotalPreorder_222 -> T_MaxOperator_128 -> T_IsMagma_176
du_'8851''45'isMagma_3074 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsMagma_176)
-> AgdaAny -> AgdaAny -> T_IsMagma_176
forall a b. a -> b
coe
      T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsMagma_176
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'isMagma_3030
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-isMonoid
d_'8851''45'isMonoid_3076 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny ->
  (AgdaAny -> AgdaAny) ->
  MAlonzo.Code.Algebra.Structures.T_IsMonoid_686
d_'8851''45'isMonoid_3076 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_IsMonoid_686
d_'8851''45'isMonoid_3076 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_IsMonoid_686
du_'8851''45'isMonoid_3076 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'isMonoid_3076 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny ->
  (AgdaAny -> AgdaAny) ->
  MAlonzo.Code.Algebra.Structures.T_IsMonoid_686
du_'8851''45'isMonoid_3076 :: T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_IsMonoid_686
du_'8851''45'isMonoid_3076 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> (AgdaAny -> AgdaAny)
 -> T_IsMonoid_686)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_IsMonoid_686
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_IsMonoid_686
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'isMonoid_3042
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-isSelectiveMagma
d_'8851''45'isSelectiveMagma_3078 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Structures.T_IsSelectiveMagma_436
d_'8851''45'isSelectiveMagma_3078 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_IsSelectiveMagma_436
d_'8851''45'isSelectiveMagma_3078 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222 -> T_MaxOperator_128 -> T_IsSelectiveMagma_436
du_'8851''45'isSelectiveMagma_3078 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'isSelectiveMagma_3078 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Structures.T_IsSelectiveMagma_436
du_'8851''45'isSelectiveMagma_3078 :: T_TotalPreorder_222 -> T_MaxOperator_128 -> T_IsSelectiveMagma_436
du_'8851''45'isSelectiveMagma_3078 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsSelectiveMagma_436)
-> AgdaAny -> AgdaAny -> T_IsSelectiveMagma_436
forall a b. a -> b
coe
      T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsSelectiveMagma_436
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'isSelectiveMagma_3038
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-isSemigroup
d_'8851''45'isSemigroup_3080 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Structures.T_IsSemigroup_472
d_'8851''45'isSemigroup_3080 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_IsSemigroup_472
d_'8851''45'isSemigroup_3080 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222 -> T_MaxOperator_128 -> T_IsSemigroup_472
du_'8851''45'isSemigroup_3080 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'isSemigroup_3080 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Structures.T_IsSemigroup_472
du_'8851''45'isSemigroup_3080 :: T_TotalPreorder_222 -> T_MaxOperator_128 -> T_IsSemigroup_472
du_'8851''45'isSemigroup_3080 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsSemigroup_472)
-> AgdaAny -> AgdaAny -> T_IsSemigroup_472
forall a b. a -> b
coe
      T_TotalPreorder_222 -> T_MinOperator_98 -> T_IsSemigroup_472
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'isSemigroup_3032
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-glb
d_'8851''45'glb_3082 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'glb_3082 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'glb_3082 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'glb_3082 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'glb_3082 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'glb_3082 :: T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'glb_3082 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'glb_3278
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-magma
d_'8851''45'magma_3084 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Bundles.T_Magma_68
d_'8851''45'magma_3084 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_Magma_68
d_'8851''45'magma_3084 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222 -> T_MaxOperator_128 -> T_Magma_68
du_'8851''45'magma_3084 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'magma_3084 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Bundles.T_Magma_68
du_'8851''45'magma_3084 :: T_TotalPreorder_222 -> T_MaxOperator_128 -> T_Magma_68
du_'8851''45'magma_3084 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222 -> T_MinOperator_98 -> T_Magma_68)
-> AgdaAny -> AgdaAny -> T_Magma_68
forall a b. a -> b
coe
      T_TotalPreorder_222 -> T_MinOperator_98 -> T_Magma_68
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'magma_3048
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-mono-≤
d_'8851''45'mono'45''8804'_3086 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'mono'45''8804'_3086 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'mono'45''8804'_3086 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'mono'45''8804'_3086 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'mono'45''8804'_3086 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'mono'45''8804'_3086 :: T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'mono'45''8804'_3086 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'mono'45''8804'_3206
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-monoid
d_'8851''45'monoid_3088 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny ->
  (AgdaAny -> AgdaAny) -> MAlonzo.Code.Algebra.Bundles.T_Monoid_882
d_'8851''45'monoid_3088 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_Monoid_882
d_'8851''45'monoid_3088 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_Monoid_882
du_'8851''45'monoid_3088 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'monoid_3088 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny ->
  (AgdaAny -> AgdaAny) -> MAlonzo.Code.Algebra.Bundles.T_Monoid_882
du_'8851''45'monoid_3088 :: T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_Monoid_882
du_'8851''45'monoid_3088 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> (AgdaAny -> AgdaAny)
 -> T_Monoid_882)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_Monoid_882
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_Monoid_882
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'monoid_3060
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-monoʳ-≤
d_'8851''45'mono'691''45''8804'_3090 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'mono'691''45''8804'_3090 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'mono'691''45''8804'_3090 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'mono'691''45''8804'_3090 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'mono'691''45''8804'_3090 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'mono'691''45''8804'_3090 :: T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'mono'691''45''8804'_3090 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'mono'691''45''8804'_3266
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-monoˡ-≤
d_'8851''45'mono'737''45''8804'_3092 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'mono'737''45''8804'_3092 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'mono'737''45''8804'_3092 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'mono'737''45''8804'_3092 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'mono'737''45''8804'_3092 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'mono'737''45''8804'_3092 :: T_TotalPreorder_222
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'mono'737''45''8804'_3092 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'mono'737''45''8804'_3256
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-sel
d_'8851''45'sel_3094 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Data.Sum.Base.T__'8846'__30
d_'8851''45'sel_3094 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> T__'8846'__30
d_'8851''45'sel_3094 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> T__'8846'__30
du_'8851''45'sel_3094 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'sel_3094 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Data.Sum.Base.T__'8846'__30
du_'8851''45'sel_3094 :: T_TotalPreorder_222
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> T__'8846'__30
du_'8851''45'sel_3094 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98 -> AgdaAny -> AgdaAny -> T__'8846'__30)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> T__'8846'__30
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> T__'8846'__30
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'sel_2988
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-selectiveMagma
d_'8851''45'selectiveMagma_3096 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Bundles.T_SelectiveMagma_122
d_'8851''45'selectiveMagma_3096 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_SelectiveMagma_122
d_'8851''45'selectiveMagma_3096 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222 -> T_MaxOperator_128 -> T_SelectiveMagma_122
du_'8851''45'selectiveMagma_3096 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'selectiveMagma_3096 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Bundles.T_SelectiveMagma_122
du_'8851''45'selectiveMagma_3096 :: T_TotalPreorder_222 -> T_MaxOperator_128 -> T_SelectiveMagma_122
du_'8851''45'selectiveMagma_3096 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222 -> T_MinOperator_98 -> T_SelectiveMagma_122)
-> AgdaAny -> AgdaAny -> T_SelectiveMagma_122
forall a b. a -> b
coe
      T_TotalPreorder_222 -> T_MinOperator_98 -> T_SelectiveMagma_122
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'selectiveMagma_3056
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-semigroup
d_'8851''45'semigroup_3098 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Bundles.T_Semigroup_536
d_'8851''45'semigroup_3098 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_Semigroup_536
d_'8851''45'semigroup_3098 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222 -> T_MaxOperator_128 -> T_Semigroup_536
du_'8851''45'semigroup_3098 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'semigroup_3098 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Algebra.Bundles.T_Semigroup_536
du_'8851''45'semigroup_3098 :: T_TotalPreorder_222 -> T_MaxOperator_128 -> T_Semigroup_536
du_'8851''45'semigroup_3098 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222 -> T_MinOperator_98 -> T_Semigroup_536)
-> AgdaAny -> AgdaAny -> T_Semigroup_536
forall a b. a -> b
coe
      T_TotalPreorder_222 -> T_MinOperator_98 -> T_Semigroup_536
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'semigroup_3050
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-triangulate
d_'8851''45'triangulate_3100 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'triangulate_3100 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'triangulate_3100 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'triangulate_3100 T_TotalPreorder_222
v3 T_MaxOperator_128
v5
du_'8851''45'triangulate_3100 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'triangulate_3100 :: T_TotalPreorder_222
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'triangulate_3100 T_TotalPreorder_222
v0 T_MaxOperator_128
v1
  = (T_TotalPreorder_222
 -> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'triangulate_3292
      ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
      ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v1))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-zero
d_'8851''45'zero_3102 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny ->
  (AgdaAny -> AgdaAny) -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8851''45'zero_3102 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> T_Σ_14
d_'8851''45'zero_3102 ~()
v0 ~()
v1 ~()
v2 ~T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny -> AgdaAny
v7
  = T_MaxOperator_128 -> AgdaAny -> (AgdaAny -> AgdaAny) -> T_Σ_14
du_'8851''45'zero_3102 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny -> AgdaAny
v7
du_'8851''45'zero_3102 ::
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny ->
  (AgdaAny -> AgdaAny) -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8851''45'zero_3102 :: T_MaxOperator_128 -> AgdaAny -> (AgdaAny -> AgdaAny) -> T_Σ_14
du_'8851''45'zero_3102 T_MaxOperator_128
v0 AgdaAny
v1 AgdaAny -> AgdaAny
v2
  = (AgdaAny -> AgdaAny -> T_Σ_14) -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Agda.Builtin.Sigma.C__'44'__32
      ((AgdaAny -> AgdaAny) -> AgdaAny
forall a b. a -> b
coe
         (\ AgdaAny
v3 ->
            (T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
              T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8805'y'8658'x'8852'y'8776'x_156
              T_MaxOperator_128
v0 AgdaAny
v1 AgdaAny
v3 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v2 AgdaAny
v3)))
      ((AgdaAny -> AgdaAny) -> AgdaAny
forall a b. a -> b
coe
         (\ AgdaAny
v3 ->
            (T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
              T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8804'y'8658'x'8852'y'8776'y_150
              T_MaxOperator_128
v0 AgdaAny
v3 AgdaAny
v1 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v2 AgdaAny
v3)))
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-zeroʳ
d_'8851''45'zero'691'_3104 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
d_'8851''45'zero'691'_3104 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
d_'8851''45'zero'691'_3104 ~()
v0 ~()
v1 ~()
v2 ~T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny -> AgdaAny
v7 AgdaAny
v8
  = T_MaxOperator_128
-> AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'zero'691'_3104 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny -> AgdaAny
v7 AgdaAny
v8
du_'8851''45'zero'691'_3104 ::
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'zero'691'_3104 :: T_MaxOperator_128
-> AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'zero'691'_3104 T_MaxOperator_128
v0 AgdaAny
v1 AgdaAny -> AgdaAny
v2 AgdaAny
v3
  = (T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8804'y'8658'x'8852'y'8776'y_150
      T_MaxOperator_128
v0 AgdaAny
v3 AgdaAny
v1 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v2 AgdaAny
v3)
-- Algebra.Construct.NaturalChoice.MinMaxOp._.⊓-zeroˡ
d_'8851''45'zero'737'_3106 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
d_'8851''45'zero'737'_3106 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
d_'8851''45'zero'737'_3106 ~()
v0 ~()
v1 ~()
v2 ~T_TotalPreorder_222
v3 ~T_MinOperator_98
v4 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny -> AgdaAny
v7 AgdaAny
v8
  = T_MaxOperator_128
-> AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'zero'737'_3106 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny -> AgdaAny
v7 AgdaAny
v8
du_'8851''45'zero'737'_3106 ::
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'zero'737'_3106 :: T_MaxOperator_128
-> AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_'8851''45'zero'737'_3106 T_MaxOperator_128
v0 AgdaAny
v1 AgdaAny -> AgdaAny
v2 AgdaAny
v3
  = (T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8805'y'8658'x'8852'y'8776'x_156
      T_MaxOperator_128
v0 AgdaAny
v1 AgdaAny
v3 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v2 AgdaAny
v3)
-- Algebra.Construct.NaturalChoice.MinMaxOp.⊓-distribˡ-⊔
d_'8851''45'distrib'737''45''8852'_3108 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'distrib'737''45''8852'_3108 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'distrib'737''45''8852'_3108 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny
v7
                                        AgdaAny
v8
  = T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'distrib'737''45''8852'_3108 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny
v7 AgdaAny
v8
du_'8851''45'distrib'737''45''8852'_3108 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'distrib'737''45''8852'_3108 :: T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'distrib'737''45''8852'_3108 T_TotalPreorder_222
v0 T_MinOperator_98
v1 T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v4 AgdaAny
v5
  = let v6 :: t
v6
          = (T_IsTotalPreorder_124 -> AgdaAny -> AgdaAny -> T__'8846'__30)
-> T_IsTotalPreorder_124 -> AgdaAny -> AgdaAny -> t
forall a b. a -> b
coe
              T_IsTotalPreorder_124 -> AgdaAny -> AgdaAny -> T__'8846'__30
MAlonzo.Code.Relation.Binary.Structures.d_total_134
              (T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                 (T_TotalPreorder_222 -> T_TotalPreorder_222
forall a b. a -> b
coe T_TotalPreorder_222
v0))
              AgdaAny
v4 AgdaAny
v5 in
    AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (case AgdaAny -> T__'8846'__30
forall a b. a -> b
coe AgdaAny
forall a. a
v6 of
         MAlonzo.Code.Data.Sum.Base.C_inj'8321'_38 AgdaAny
v7
           -> let v8 :: b
v8
                    = T_SubRelation_60 -> b
forall a b. a -> b
coe
                        T_SubRelation_60
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_equalitySubRelation_152 in
              AgdaAny -> AgdaAny
forall a b. a -> b
coe
                ((T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                   T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_begin__126
                   (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v8)
                   ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                      AgdaAny
v3
                      ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                         T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                         AgdaAny
v4 AgdaAny
v5))
                   ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                      ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                         T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                         AgdaAny
v3 AgdaAny
v4)
                      ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                         T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                         AgdaAny
v3 AgdaAny
v5))
                   (let v9 :: T_IsPreorder_70
v9
                          = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                              ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                 T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                    AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                         (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10217'_368
                         ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                            (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v9))
                         ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                            AgdaAny
v3
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                               AgdaAny
v4 AgdaAny
v5))
                         ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                            AgdaAny
v3 AgdaAny
v5)
                         ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                               AgdaAny
v3 AgdaAny
v4)
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                               AgdaAny
v3 AgdaAny
v5))
                         (let v10 :: T_IsPreorder_70
v10
                                = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                    ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                       T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                       (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                          AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                               (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10216'_370
                               ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                                  (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v10))
                               (T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
                                  ((T_IsPreorder_70 -> T_IsEquivalence_26)
-> AgdaAny -> T_IsEquivalence_26
forall a b. a -> b
coe
                                     T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                                     (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v10)))
                               ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                  T_MinOperator_98
v1 AgdaAny
v3 AgdaAny
v5)
                               ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                  T_MaxOperator_128
v2
                                  ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                     T_MinOperator_98
v1 AgdaAny
v3 AgdaAny
v4)
                                  ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                     T_MinOperator_98
v1 AgdaAny
v3 AgdaAny
v5))
                               ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                  T_MaxOperator_128
v2
                                  ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                     T_MinOperator_98
v1 AgdaAny
v3 AgdaAny
v4)
                                  ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                     T_MinOperator_98
v1 AgdaAny
v3 AgdaAny
v5))
                               (let v11 :: T_IsPreorder_70
v11
                                      = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                          ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                             T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                             (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  (((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du__'8718'_492
                                     ((T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_stop_116
                                        (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v11))
                                     ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                        T_MaxOperator_128
v2
                                        ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                           T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                           T_MinOperator_98
v1 AgdaAny
v3 AgdaAny
v4)
                                        ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                           T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                           T_MinOperator_98
v1 AgdaAny
v3 AgdaAny
v5))))
                               ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8804'y'8658'x'8852'y'8776'y_150
                                  T_MaxOperator_128
v2
                                  (((AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                                     (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Function.Base.du__'45''10216'_'8739'_292
                                     ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                        T_MinOperator_98
v1 AgdaAny
v3)
                                     (\ AgdaAny
v11 AgdaAny
v12 -> AgdaAny
v11) AgdaAny
v4 AgdaAny
v5)
                                  (((AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                                     (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Function.Base.du_'8739'_'10217''45'__298
                                     (\ AgdaAny
v11 AgdaAny
v12 -> AgdaAny
v12)
                                     ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                        T_MinOperator_98
v1 AgdaAny
v3)
                                     AgdaAny
v4 AgdaAny
v5)
                                  ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                                     T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'mono'691''45''8804'_3266
                                     (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v4) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v5) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v7)))))
                         ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                            T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'cong'737'_2882
                            (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3)
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                               AgdaAny
v4 AgdaAny
v5)
                            (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v5)
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8804'y'8658'x'8852'y'8776'y_150
                               T_MaxOperator_128
v2 AgdaAny
v4 AgdaAny
v5 AgdaAny
v7)))))
         MAlonzo.Code.Data.Sum.Base.C_inj'8322'_42 AgdaAny
v7
           -> let v8 :: b
v8
                    = T_SubRelation_60 -> b
forall a b. a -> b
coe
                        T_SubRelation_60
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_equalitySubRelation_152 in
              AgdaAny -> AgdaAny
forall a b. a -> b
coe
                ((T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                   T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_begin__126
                   (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v8)
                   ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                      AgdaAny
v3
                      ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                         T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                         AgdaAny
v4 AgdaAny
v5))
                   ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                      ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                         T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                         AgdaAny
v3 AgdaAny
v4)
                      ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                         T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                         AgdaAny
v3 AgdaAny
v5))
                   (let v9 :: T_IsPreorder_70
v9
                          = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                              ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                 T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                    AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                         (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10217'_368
                         ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                            (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v9))
                         ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                            AgdaAny
v3
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                               AgdaAny
v4 AgdaAny
v5))
                         ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                            AgdaAny
v3 AgdaAny
v4)
                         ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                               AgdaAny
v3 AgdaAny
v4)
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                               AgdaAny
v3 AgdaAny
v5))
                         (let v10 :: T_IsPreorder_70
v10
                                = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                    ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                       T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                       (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                          AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                               (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10216'_370
                               ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                                  (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v10))
                               (T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
                                  ((T_IsPreorder_70 -> T_IsEquivalence_26)
-> AgdaAny -> T_IsEquivalence_26
forall a b. a -> b
coe
                                     T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                                     (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v10)))
                               ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                  T_MinOperator_98
v1 AgdaAny
v3 AgdaAny
v4)
                               ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                  T_MaxOperator_128
v2
                                  ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                     T_MinOperator_98
v1 AgdaAny
v3 AgdaAny
v4)
                                  ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                     T_MinOperator_98
v1 AgdaAny
v3 AgdaAny
v5))
                               ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                  T_MaxOperator_128
v2
                                  ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                     T_MinOperator_98
v1 AgdaAny
v3 AgdaAny
v4)
                                  ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                     T_MinOperator_98
v1 AgdaAny
v3 AgdaAny
v5))
                               (let v11 :: T_IsPreorder_70
v11
                                      = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                          ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                             T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                             (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  (((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du__'8718'_492
                                     ((T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_stop_116
                                        (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v11))
                                     ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                        T_MaxOperator_128
v2
                                        ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                           T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                           T_MinOperator_98
v1 AgdaAny
v3 AgdaAny
v4)
                                        ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                           T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                           T_MinOperator_98
v1 AgdaAny
v3 AgdaAny
v5))))
                               ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8805'y'8658'x'8852'y'8776'x_156
                                  T_MaxOperator_128
v2
                                  (((AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                                     (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Function.Base.du_'8739'_'10217''45'__298
                                     (\ AgdaAny
v11 AgdaAny
v12 -> AgdaAny
v12)
                                     ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                        T_MinOperator_98
v1 AgdaAny
v3)
                                     AgdaAny
v5 AgdaAny
v4)
                                  (((AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                                     (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Function.Base.du__'45''10216'_'8739'_292
                                     ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                        T_MinOperator_98
v1 AgdaAny
v3)
                                     (\ AgdaAny
v11 AgdaAny
v12 -> AgdaAny
v11) AgdaAny
v5 AgdaAny
v4)
                                  ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                                     T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'mono'691''45''8804'_3266
                                     (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v5) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v4) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v7)))))
                         ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                            T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'cong'737'_2882
                            (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3)
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                               AgdaAny
v4 AgdaAny
v5)
                            (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v4)
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8805'y'8658'x'8852'y'8776'x_156
                               T_MaxOperator_128
v2 AgdaAny
v4 AgdaAny
v5 AgdaAny
v7)))))
         T__'8846'__30
_ -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError)
-- Algebra.Construct.NaturalChoice.MinMaxOp.⊓-distribʳ-⊔
d_'8851''45'distrib'691''45''8852'_3136 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'distrib'691''45''8852'_3136 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'distrib'691''45''8852'_3136 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'distrib'691''45''8852'_3136 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5
du_'8851''45'distrib'691''45''8852'_3136 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'distrib'691''45''8852'_3136 :: T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'distrib'691''45''8852'_3136 T_TotalPreorder_222
v0 T_MinOperator_98
v1 T_MaxOperator_128
v2
  = (T_Setoid_44
 -> (AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny
     -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_Setoid_44
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny
    -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Consequences.Setoid.du_comm'43'distr'737''8658'distr'691'_684
      ((T_Preorder_132 -> T_Setoid_44) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_Preorder_132 -> T_Setoid_44
MAlonzo.Code.Relation.Binary.Bundles.du_setoid_180
         ((T_TotalPreorder_222 -> T_Preorder_132) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_TotalPreorder_222 -> T_Preorder_132
MAlonzo.Code.Relation.Binary.Bundles.du_preorder_252 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)))
      (T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
         (T_MinOperator_98 -> T_MinOperator_98
forall a b. a -> b
coe T_MinOperator_98
v1))
      (T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
         (T_MaxOperator_128 -> T_MaxOperator_128
forall a b. a -> b
coe T_MaxOperator_128
v2))
      ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'cong_2930
         ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
            (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
         ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
            (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v2)))
      ((T_TotalPreorder_222
 -> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'comm_2856
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1))
      ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> T_MaxOperator_128
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'distrib'737''45''8852'_3108 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v2))
-- Algebra.Construct.NaturalChoice.MinMaxOp.⊓-distrib-⊔
d_'8851''45'distrib'45''8852'_3138 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8851''45'distrib'45''8852'_3138 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_Σ_14
d_'8851''45'distrib'45''8852'_3138 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98 -> T_MaxOperator_128 -> T_Σ_14
du_'8851''45'distrib'45''8852'_3138 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5
du_'8851''45'distrib'45''8852'_3138 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8851''45'distrib'45''8852'_3138 :: T_TotalPreorder_222
-> T_MinOperator_98 -> T_MaxOperator_128 -> T_Σ_14
du_'8851''45'distrib'45''8852'_3138 T_TotalPreorder_222
v0 T_MinOperator_98
v1 T_MaxOperator_128
v2
  = (AgdaAny -> AgdaAny -> T_Σ_14) -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Agda.Builtin.Sigma.C__'44'__32
      ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> T_MaxOperator_128
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'distrib'737''45''8852'_3108 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v2))
      ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> T_MaxOperator_128
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'distrib'691''45''8852'_3136 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v2))
-- Algebra.Construct.NaturalChoice.MinMaxOp.⊔-distribˡ-⊓
d_'8852''45'distrib'737''45''8851'_3140 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8852''45'distrib'737''45''8851'_3140 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8852''45'distrib'737''45''8851'_3140 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny
v7
                                        AgdaAny
v8
  = T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8852''45'distrib'737''45''8851'_3140 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny
v7 AgdaAny
v8
du_'8852''45'distrib'737''45''8851'_3140 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8852''45'distrib'737''45''8851'_3140 :: T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8852''45'distrib'737''45''8851'_3140 T_TotalPreorder_222
v0 T_MinOperator_98
v1 T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v4 AgdaAny
v5
  = let v6 :: t
v6
          = (T_IsTotalPreorder_124 -> AgdaAny -> AgdaAny -> T__'8846'__30)
-> T_IsTotalPreorder_124 -> AgdaAny -> AgdaAny -> t
forall a b. a -> b
coe
              T_IsTotalPreorder_124 -> AgdaAny -> AgdaAny -> T__'8846'__30
MAlonzo.Code.Relation.Binary.Structures.d_total_134
              (T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                 (T_TotalPreorder_222 -> T_TotalPreorder_222
forall a b. a -> b
coe T_TotalPreorder_222
v0))
              AgdaAny
v4 AgdaAny
v5 in
    AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (case AgdaAny -> T__'8846'__30
forall a b. a -> b
coe AgdaAny
forall a. a
v6 of
         MAlonzo.Code.Data.Sum.Base.C_inj'8321'_38 AgdaAny
v7
           -> let v8 :: b
v8
                    = T_SubRelation_60 -> b
forall a b. a -> b
coe
                        T_SubRelation_60
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_equalitySubRelation_152 in
              AgdaAny -> AgdaAny
forall a b. a -> b
coe
                ((T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                   T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_begin__126
                   (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v8)
                   ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                      AgdaAny
v3
                      ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                         T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                         AgdaAny
v4 AgdaAny
v5))
                   ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                      ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                         T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                         AgdaAny
v3 AgdaAny
v4)
                      ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                         T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                         AgdaAny
v3 AgdaAny
v5))
                   (let v9 :: T_IsPreorder_70
v9
                          = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                              ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                 T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                    AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                         (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10217'_368
                         ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                            (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v9))
                         ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                            AgdaAny
v3
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                               AgdaAny
v4 AgdaAny
v5))
                         ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                            AgdaAny
v3 AgdaAny
v4)
                         ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                               AgdaAny
v3 AgdaAny
v4)
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                               AgdaAny
v3 AgdaAny
v5))
                         (let v10 :: T_IsPreorder_70
v10
                                = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                    ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                       T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                       (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                          AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                               (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10216'_370
                               ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                                  (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v10))
                               (T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
                                  ((T_IsPreorder_70 -> T_IsEquivalence_26)
-> AgdaAny -> T_IsEquivalence_26
forall a b. a -> b
coe
                                     T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                                     (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v10)))
                               ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                  T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v4)
                               ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                  T_MinOperator_98
v1
                                  ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                     T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v4)
                                  ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                     T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v5))
                               ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                  T_MinOperator_98
v1
                                  ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                     T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v4)
                                  ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                     T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v5))
                               (let v11 :: T_IsPreorder_70
v11
                                      = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                          ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                             T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                             (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  (((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du__'8718'_492
                                     ((T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_stop_116
                                        (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v11))
                                     ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                        T_MinOperator_98
v1
                                        ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                           T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                           T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v4)
                                        ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                           T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                           T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v5))))
                               ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8804'y'8658'x'8851'y'8776'x_120
                                  T_MinOperator_98
v1
                                  (((AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                                     (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Function.Base.du_'8739'_'10217''45'__298
                                     (\ AgdaAny
v11 AgdaAny
v12 -> AgdaAny
v12)
                                     ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                        T_MaxOperator_128
v2 AgdaAny
v3)
                                     AgdaAny
v5 AgdaAny
v4)
                                  (((AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                                     (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Function.Base.du__'45''10216'_'8739'_292
                                     ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                        T_MaxOperator_128
v2 AgdaAny
v3)
                                     (\ AgdaAny
v11 AgdaAny
v12 -> AgdaAny
v11) AgdaAny
v5 AgdaAny
v4)
                                  ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                                     T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'mono'691''45''8804'_3266
                                     ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
                                        (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
                                     ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
                                        (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v2))
                                     (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v5) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v4) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v7)))))
                         ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                            T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'cong'737'_2882
                            ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
                               (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
                            ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
                               (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v2))
                            (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3)
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                               AgdaAny
v4 AgdaAny
v5)
                            (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v4)
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8804'y'8658'x'8851'y'8776'x_120
                               T_MinOperator_98
v1 AgdaAny
v4 AgdaAny
v5 AgdaAny
v7)))))
         MAlonzo.Code.Data.Sum.Base.C_inj'8322'_42 AgdaAny
v7
           -> let v8 :: b
v8
                    = T_SubRelation_60 -> b
forall a b. a -> b
coe
                        T_SubRelation_60
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_equalitySubRelation_152 in
              AgdaAny -> AgdaAny
forall a b. a -> b
coe
                ((T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                   T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_begin__126
                   (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v8)
                   ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                      AgdaAny
v3
                      ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                         T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                         AgdaAny
v4 AgdaAny
v5))
                   ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                      ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                         T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                         AgdaAny
v3 AgdaAny
v4)
                      ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                         T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                         AgdaAny
v3 AgdaAny
v5))
                   (let v9 :: T_IsPreorder_70
v9
                          = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                              ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                 T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                    AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                         (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10217'_368
                         ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                            (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v9))
                         ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                            AgdaAny
v3
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                               AgdaAny
v4 AgdaAny
v5))
                         ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                            AgdaAny
v3 AgdaAny
v5)
                         ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                               AgdaAny
v3 AgdaAny
v4)
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                               AgdaAny
v3 AgdaAny
v5))
                         (let v10 :: T_IsPreorder_70
v10
                                = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                    ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                       T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                       (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                          AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                               (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10216'_370
                               ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                                  (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v10))
                               (T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
                                  ((T_IsPreorder_70 -> T_IsEquivalence_26)
-> AgdaAny -> T_IsEquivalence_26
forall a b. a -> b
coe
                                     T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                                     (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v10)))
                               ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                  T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v5)
                               ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                  T_MinOperator_98
v1
                                  ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                     T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v4)
                                  ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                     T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v5))
                               ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                  T_MinOperator_98
v1
                                  ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                     T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v4)
                                  ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                     T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v5))
                               (let v11 :: T_IsPreorder_70
v11
                                      = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                          ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                             T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                             (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  (((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du__'8718'_492
                                     ((T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_stop_116
                                        (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v11))
                                     ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                        T_MinOperator_98
v1
                                        ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                           T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                           T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v4)
                                        ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                           T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                           T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v5))))
                               ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8805'y'8658'x'8851'y'8776'y_126
                                  T_MinOperator_98
v1
                                  (((AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                                     (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Function.Base.du__'45''10216'_'8739'_292
                                     ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                        T_MaxOperator_128
v2 AgdaAny
v3)
                                     (\ AgdaAny
v11 AgdaAny
v12 -> AgdaAny
v11) AgdaAny
v4 AgdaAny
v5)
                                  (((AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                                     (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Function.Base.du_'8739'_'10217''45'__298
                                     (\ AgdaAny
v11 AgdaAny
v12 -> AgdaAny
v12)
                                     ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                        T_MaxOperator_128
v2 AgdaAny
v3)
                                     AgdaAny
v4 AgdaAny
v5)
                                  ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                                     T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'mono'691''45''8804'_3266
                                     ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
                                        (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
                                     ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
                                        (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v2))
                                     (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v4) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v5) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v7)))))
                         ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                            T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'cong'737'_2882
                            ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
                               (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
                            ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
                               (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v2))
                            (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3)
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                               AgdaAny
v4 AgdaAny
v5)
                            (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v5)
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8805'y'8658'x'8851'y'8776'y_126
                               T_MinOperator_98
v1 AgdaAny
v4 AgdaAny
v5 AgdaAny
v7)))))
         T__'8846'__30
_ -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError)
-- Algebra.Construct.NaturalChoice.MinMaxOp.⊔-distribʳ-⊓
d_'8852''45'distrib'691''45''8851'_3168 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8852''45'distrib'691''45''8851'_3168 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8852''45'distrib'691''45''8851'_3168 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8852''45'distrib'691''45''8851'_3168 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5
du_'8852''45'distrib'691''45''8851'_3168 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8852''45'distrib'691''45''8851'_3168 :: T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8852''45'distrib'691''45''8851'_3168 T_TotalPreorder_222
v0 T_MinOperator_98
v1 T_MaxOperator_128
v2
  = (T_Setoid_44
 -> (AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny
     -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_Setoid_44
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny
    -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Consequences.Setoid.du_comm'43'distr'737''8658'distr'691'_684
      ((T_Preorder_132 -> T_Setoid_44) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_Preorder_132 -> T_Setoid_44
MAlonzo.Code.Relation.Binary.Bundles.du_setoid_180
         ((T_TotalPreorder_222 -> T_Preorder_132) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_TotalPreorder_222 -> T_Preorder_132
MAlonzo.Code.Relation.Binary.Bundles.du_preorder_252 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)))
      (T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
         (T_MaxOperator_128 -> T_MaxOperator_128
forall a b. a -> b
coe T_MaxOperator_128
v2))
      (T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
         (T_MinOperator_98 -> T_MinOperator_98
forall a b. a -> b
coe T_MinOperator_98
v1))
      ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'cong_2930
         (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1))
      ((T_TotalPreorder_222
 -> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'comm_2856
         ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
            (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
         ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
            (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v2)))
      ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> T_MaxOperator_128
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8852''45'distrib'737''45''8851'_3140 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v2))
-- Algebra.Construct.NaturalChoice.MinMaxOp.⊔-distrib-⊓
d_'8852''45'distrib'45''8851'_3170 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8852''45'distrib'45''8851'_3170 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_Σ_14
d_'8852''45'distrib'45''8851'_3170 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98 -> T_MaxOperator_128 -> T_Σ_14
du_'8852''45'distrib'45''8851'_3170 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5
du_'8852''45'distrib'45''8851'_3170 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8852''45'distrib'45''8851'_3170 :: T_TotalPreorder_222
-> T_MinOperator_98 -> T_MaxOperator_128 -> T_Σ_14
du_'8852''45'distrib'45''8851'_3170 T_TotalPreorder_222
v0 T_MinOperator_98
v1 T_MaxOperator_128
v2
  = (AgdaAny -> AgdaAny -> T_Σ_14) -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Agda.Builtin.Sigma.C__'44'__32
      ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> T_MaxOperator_128
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8852''45'distrib'737''45''8851'_3140 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v2))
      ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> T_MaxOperator_128
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8852''45'distrib'691''45''8851'_3168 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1)
         (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v2))
-- Algebra.Construct.NaturalChoice.MinMaxOp.⊓-absorbs-⊔
d_'8851''45'absorbs'45''8852'_3172 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny
d_'8851''45'absorbs'45''8852'_3172 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8851''45'absorbs'45''8852'_3172 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny
v7
  = T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'absorbs'45''8852'_3172 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny
v7
du_'8851''45'absorbs'45''8852'_3172 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny
du_'8851''45'absorbs'45''8852'_3172 :: T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'absorbs'45''8852'_3172 T_TotalPreorder_222
v0 T_MinOperator_98
v1 T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v4
  = let v5 :: t
v5
          = (T_IsTotalPreorder_124 -> AgdaAny -> AgdaAny -> T__'8846'__30)
-> T_IsTotalPreorder_124 -> AgdaAny -> AgdaAny -> t
forall a b. a -> b
coe
              T_IsTotalPreorder_124 -> AgdaAny -> AgdaAny -> T__'8846'__30
MAlonzo.Code.Relation.Binary.Structures.d_total_134
              (T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                 (T_TotalPreorder_222 -> T_TotalPreorder_222
forall a b. a -> b
coe T_TotalPreorder_222
v0))
              AgdaAny
v3 AgdaAny
v4 in
    AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (case AgdaAny -> T__'8846'__30
forall a b. a -> b
coe AgdaAny
forall a. a
v5 of
         MAlonzo.Code.Data.Sum.Base.C_inj'8321'_38 AgdaAny
v6
           -> let v7 :: b
v7
                    = T_SubRelation_60 -> b
forall a b. a -> b
coe
                        T_SubRelation_60
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_equalitySubRelation_152 in
              AgdaAny -> AgdaAny
forall a b. a -> b
coe
                ((T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                   T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_begin__126
                   (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v7)
                   ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                      AgdaAny
v3
                      ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                         T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                         AgdaAny
v3 AgdaAny
v4))
                   (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3)
                   (let v8 :: T_IsPreorder_70
v8
                          = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                              ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                 T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                    AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                         (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10217'_368
                         ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                            (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v8))
                         ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                            AgdaAny
v3
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                               AgdaAny
v3 AgdaAny
v4))
                         ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                            AgdaAny
v3 AgdaAny
v4)
                         AgdaAny
v3
                         (let v9 :: T_IsPreorder_70
v9
                                = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                    ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                       T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                       (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                          AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                               (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10217'_368
                               ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                                  (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v9))
                               ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                  T_MinOperator_98
v1 AgdaAny
v3 AgdaAny
v4)
                               AgdaAny
v3 AgdaAny
v3
                               (let v10 :: T_IsPreorder_70
v10
                                      = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                          ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                             T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                             (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  (((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du__'8718'_492
                                     ((T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_stop_116
                                        (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v10))
                                     (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3)))
                               ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8804'y'8658'x'8851'y'8776'x_120
                                  T_MinOperator_98
v1 AgdaAny
v3 AgdaAny
v4 AgdaAny
v6)))
                         ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                            T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'cong'737'_2882
                            (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3)
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                               AgdaAny
v3 AgdaAny
v4)
                            (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v4)
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8804'y'8658'x'8852'y'8776'y_150
                               T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v4 AgdaAny
v6)))))
         MAlonzo.Code.Data.Sum.Base.C_inj'8322'_42 AgdaAny
v6
           -> let v7 :: b
v7
                    = T_SubRelation_60 -> b
forall a b. a -> b
coe
                        T_SubRelation_60
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_equalitySubRelation_152 in
              AgdaAny -> AgdaAny
forall a b. a -> b
coe
                ((T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                   T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_begin__126
                   (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v7)
                   ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                      AgdaAny
v3
                      ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                         T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                         AgdaAny
v3 AgdaAny
v4))
                   (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3)
                   (let v8 :: T_IsPreorder_70
v8
                          = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                              ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                 T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                    AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                         (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10217'_368
                         ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                            (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v8))
                         ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                            AgdaAny
v3
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                               AgdaAny
v3 AgdaAny
v4))
                         ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                            AgdaAny
v3 AgdaAny
v3)
                         AgdaAny
v3
                         (let v9 :: T_IsPreorder_70
v9
                                = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                    ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                       T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                       (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                          AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                               (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10217'_368
                               ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                                  (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v9))
                               ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                  T_MinOperator_98
v1 AgdaAny
v3 AgdaAny
v3)
                               AgdaAny
v3 AgdaAny
v3
                               (let v10 :: T_IsPreorder_70
v10
                                      = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                          ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                             T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                             (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  (((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du__'8718'_492
                                     ((T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_stop_116
                                        (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v10))
                                     (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3)))
                               ((T_TotalPreorder_222 -> T_MinOperator_98 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_TotalPreorder_222 -> T_MinOperator_98 -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'idem_2984
                                  (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3))))
                         ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                            T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'cong'737'_2882
                            (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3)
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                               AgdaAny
v3 AgdaAny
v4)
                            (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3)
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8805'y'8658'x'8852'y'8776'x_156
                               T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v4 AgdaAny
v6)))))
         T__'8846'__30
_ -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError)
-- Algebra.Construct.NaturalChoice.MinMaxOp.⊔-absorbs-⊓
d_'8852''45'absorbs'45''8851'_3194 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny
d_'8852''45'absorbs'45''8851'_3194 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8852''45'absorbs'45''8851'_3194 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny
v7
  = T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8852''45'absorbs'45''8851'_3194 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny
v7
du_'8852''45'absorbs'45''8851'_3194 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny
du_'8852''45'absorbs'45''8851'_3194 :: T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8852''45'absorbs'45''8851'_3194 T_TotalPreorder_222
v0 T_MinOperator_98
v1 T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v4
  = let v5 :: t
v5
          = (T_IsTotalPreorder_124 -> AgdaAny -> AgdaAny -> T__'8846'__30)
-> T_IsTotalPreorder_124 -> AgdaAny -> AgdaAny -> t
forall a b. a -> b
coe
              T_IsTotalPreorder_124 -> AgdaAny -> AgdaAny -> T__'8846'__30
MAlonzo.Code.Relation.Binary.Structures.d_total_134
              (T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                 (T_TotalPreorder_222 -> T_TotalPreorder_222
forall a b. a -> b
coe T_TotalPreorder_222
v0))
              AgdaAny
v3 AgdaAny
v4 in
    AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (case AgdaAny -> T__'8846'__30
forall a b. a -> b
coe AgdaAny
forall a. a
v5 of
         MAlonzo.Code.Data.Sum.Base.C_inj'8321'_38 AgdaAny
v6
           -> let v7 :: b
v7
                    = T_SubRelation_60 -> b
forall a b. a -> b
coe
                        T_SubRelation_60
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_equalitySubRelation_152 in
              AgdaAny -> AgdaAny
forall a b. a -> b
coe
                ((T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                   T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_begin__126
                   (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v7)
                   ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                      AgdaAny
v3
                      ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                         T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                         AgdaAny
v3 AgdaAny
v4))
                   (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3)
                   (let v8 :: T_IsPreorder_70
v8
                          = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                              ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                 T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                    AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                         (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10217'_368
                         ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                            (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v8))
                         ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                            AgdaAny
v3
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                               AgdaAny
v3 AgdaAny
v4))
                         ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                            AgdaAny
v3 AgdaAny
v3)
                         AgdaAny
v3
                         (let v9 :: T_IsPreorder_70
v9
                                = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                    ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                       T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                       (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                          AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                               (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10217'_368
                               ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                                  (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v9))
                               ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                  T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v3)
                               AgdaAny
v3 AgdaAny
v3
                               (let v10 :: T_IsPreorder_70
v10
                                      = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                          ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                             T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                             (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  (((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du__'8718'_492
                                     ((T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_stop_116
                                        (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v10))
                                     (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3)))
                               ((T_TotalPreorder_222 -> T_MinOperator_98 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_TotalPreorder_222 -> T_MinOperator_98 -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'idem_2984
                                  ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
                                     (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
                                  ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
                                     (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v2))
                                  (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3))))
                         ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                            T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'cong'737'_2882
                            ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
                               (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
                            ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
                               (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v2))
                            (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3)
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                               AgdaAny
v3 AgdaAny
v4)
                            (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3)
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8804'y'8658'x'8851'y'8776'x_120
                               T_MinOperator_98
v1 AgdaAny
v3 AgdaAny
v4 AgdaAny
v6)))))
         MAlonzo.Code.Data.Sum.Base.C_inj'8322'_42 AgdaAny
v6
           -> let v7 :: b
v7
                    = T_SubRelation_60 -> b
forall a b. a -> b
coe
                        T_SubRelation_60
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_equalitySubRelation_152 in
              AgdaAny -> AgdaAny
forall a b. a -> b
coe
                ((T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                   T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_begin__126
                   (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v7)
                   ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                      AgdaAny
v3
                      ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                         T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                         AgdaAny
v3 AgdaAny
v4))
                   (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3)
                   (let v8 :: T_IsPreorder_70
v8
                          = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                              ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                 T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                    AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                         (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10217'_368
                         ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                            (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v8))
                         ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                            AgdaAny
v3
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                               AgdaAny
v3 AgdaAny
v4))
                         ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                            AgdaAny
v3 AgdaAny
v4)
                         AgdaAny
v3
                         (let v9 :: T_IsPreorder_70
v9
                                = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                    ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                       T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                       (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                          AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                               (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10217'_368
                               ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                                  (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v9))
                               ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                  T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v4)
                               AgdaAny
v3 AgdaAny
v3
                               (let v10 :: T_IsPreorder_70
v10
                                      = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                          ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                             T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                             (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  (((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du__'8718'_492
                                     ((T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_stop_116
                                        (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v10))
                                     (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3)))
                               ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8805'y'8658'x'8852'y'8776'x_156
                                  T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v4 AgdaAny
v6)))
                         ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                            T_TotalPreorder_222
-> T_MinOperator_98
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_'8851''45'cong'737'_2882
                            ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
                               (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
                            ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
                               (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v2))
                            (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3)
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                               AgdaAny
v3 AgdaAny
v4)
                            (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v4)
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8805'y'8658'x'8851'y'8776'y_126
                               T_MinOperator_98
v1 AgdaAny
v3 AgdaAny
v4 AgdaAny
v6)))))
         T__'8846'__30
_ -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError)
-- Algebra.Construct.NaturalChoice.MinMaxOp.⊔-⊓-absorptive
d_'8852''45''8851''45'absorptive_3216 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8852''45''8851''45'absorptive_3216 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_Σ_14
d_'8852''45''8851''45'absorptive_3216 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98 -> T_MaxOperator_128 -> T_Σ_14
du_'8852''45''8851''45'absorptive_3216 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5
du_'8852''45''8851''45'absorptive_3216 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8852''45''8851''45'absorptive_3216 :: T_TotalPreorder_222
-> T_MinOperator_98 -> T_MaxOperator_128 -> T_Σ_14
du_'8852''45''8851''45'absorptive_3216 T_TotalPreorder_222
v0 T_MinOperator_98
v1 T_MaxOperator_128
v2
  = (AgdaAny -> AgdaAny -> T_Σ_14) -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Agda.Builtin.Sigma.C__'44'__32
      ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> T_MaxOperator_128
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8852''45'absorbs'45''8851'_3194 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1) (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v2))
      ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> T_MaxOperator_128
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'absorbs'45''8852'_3172 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1) (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v2))
-- Algebra.Construct.NaturalChoice.MinMaxOp.⊓-⊔-absorptive
d_'8851''45''8852''45'absorptive_3218 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8851''45''8852''45'absorptive_3218 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> T_Σ_14
d_'8851''45''8852''45'absorptive_3218 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5
  = T_TotalPreorder_222
-> T_MinOperator_98 -> T_MaxOperator_128 -> T_Σ_14
du_'8851''45''8852''45'absorptive_3218 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5
du_'8851''45''8852''45'absorptive_3218 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8851''45''8852''45'absorptive_3218 :: T_TotalPreorder_222
-> T_MinOperator_98 -> T_MaxOperator_128 -> T_Σ_14
du_'8851''45''8852''45'absorptive_3218 T_TotalPreorder_222
v0 T_MinOperator_98
v1 T_MaxOperator_128
v2
  = (AgdaAny -> AgdaAny -> T_Σ_14) -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Agda.Builtin.Sigma.C__'44'__32
      ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> T_MaxOperator_128
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8851''45'absorbs'45''8852'_3172 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1) (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v2))
      ((T_TotalPreorder_222
 -> T_MinOperator_98
 -> T_MaxOperator_128
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_'8852''45'absorbs'45''8851'_3194 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1) (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v2))
-- Algebra.Construct.NaturalChoice.MinMaxOp._≥_
d__'8805'__3220 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> ()
d__'8805'__3220 :: T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> ()
d__'8805'__3220 = T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> ()
forall a. a
erased
-- Algebra.Construct.NaturalChoice.MinMaxOp.antimono-≤-distrib-⊓
d_antimono'45''8804''45'distrib'45''8851'_3228 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  (AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  AgdaAny -> AgdaAny -> AgdaAny
d_antimono'45''8804''45'distrib'45''8851'_3228 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_antimono'45''8804''45'distrib'45''8851'_3228 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5
                                               AgdaAny -> AgdaAny
v6 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v7 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v8 AgdaAny
v9 AgdaAny
v10
  = T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_antimono'45''8804''45'distrib'45''8851'_3228
      T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5 AgdaAny -> AgdaAny
v6 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v7 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v8 AgdaAny
v9 AgdaAny
v10
du_antimono'45''8804''45'distrib'45''8851'_3228 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  (AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  AgdaAny -> AgdaAny -> AgdaAny
du_antimono'45''8804''45'distrib'45''8851'_3228 :: T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_antimono'45''8804''45'distrib'45''8851'_3228 T_TotalPreorder_222
v0 T_MinOperator_98
v1 T_MaxOperator_128
v2 AgdaAny -> AgdaAny
v3 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v5
                                                AgdaAny
v6 AgdaAny
v7
  = let v8 :: t
v8
          = (T_IsTotalPreorder_124 -> AgdaAny -> AgdaAny -> T__'8846'__30)
-> T_IsTotalPreorder_124 -> AgdaAny -> AgdaAny -> t
forall a b. a -> b
coe
              T_IsTotalPreorder_124 -> AgdaAny -> AgdaAny -> T__'8846'__30
MAlonzo.Code.Relation.Binary.Structures.d_total_134
              (T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                 (T_TotalPreorder_222 -> T_TotalPreorder_222
forall a b. a -> b
coe T_TotalPreorder_222
v0))
              AgdaAny
v6 AgdaAny
v7 in
    AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (case AgdaAny -> T__'8846'__30
forall a b. a -> b
coe AgdaAny
forall a. a
v8 of
         MAlonzo.Code.Data.Sum.Base.C_inj'8321'_38 AgdaAny
v9
           -> let v10 :: b
v10
                    = T_SubRelation_60 -> b
forall a b. a -> b
coe
                        T_SubRelation_60
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_equalitySubRelation_152 in
              AgdaAny -> AgdaAny
forall a b. a -> b
coe
                ((T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                   T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_begin__126
                   (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v10)
                   ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      AgdaAny -> AgdaAny
v3
                      ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                         T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                         AgdaAny
v6 AgdaAny
v7))
                   ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                      ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7))
                   (let v11 :: T_IsPreorder_70
v11
                          = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                              ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                 T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                    AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                         (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10217'_368
                         ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                            (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v11))
                         ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            AgdaAny -> AgdaAny
v3
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                               AgdaAny
v6 AgdaAny
v7))
                         ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6)
                         ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                            ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7))
                         (let v12 :: T_IsPreorder_70
v12
                                = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                    ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                       T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                       (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                          AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                               (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10216'_370
                               ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                                  (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v12))
                               (T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
                                  ((T_IsPreorder_70 -> T_IsEquivalence_26)
-> AgdaAny -> T_IsEquivalence_26
forall a b. a -> b
coe
                                     T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                                     (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v12)))
                               ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6)
                               ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                  T_MaxOperator_128
v2 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7))
                               ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                  T_MaxOperator_128
v2 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7))
                               (let v13 :: T_IsPreorder_70
v13
                                      = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                          ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                             T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                             (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  (((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du__'8718'_492
                                     ((T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_stop_116
                                        (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v13))
                                     ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                        T_MaxOperator_128
v2 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7))))
                               ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8805'y'8658'x'8852'y'8776'x_156
                                  T_MaxOperator_128
v2 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7) ((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny
v6 AgdaAny
v7 AgdaAny
v9))))
                         ((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v4
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                               AgdaAny
v6 AgdaAny
v7)
                            AgdaAny
v6
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8804'y'8658'x'8851'y'8776'x_120
                               T_MinOperator_98
v1 AgdaAny
v6 AgdaAny
v7 AgdaAny
v9)))))
         MAlonzo.Code.Data.Sum.Base.C_inj'8322'_42 AgdaAny
v9
           -> let v10 :: b
v10
                    = T_SubRelation_60 -> b
forall a b. a -> b
coe
                        T_SubRelation_60
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_equalitySubRelation_152 in
              AgdaAny -> AgdaAny
forall a b. a -> b
coe
                ((T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                   T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_begin__126
                   (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v10)
                   ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      AgdaAny -> AgdaAny
v3
                      ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                         T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                         AgdaAny
v6 AgdaAny
v7))
                   ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                      ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7))
                   (let v11 :: T_IsPreorder_70
v11
                          = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                              ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                 T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                    AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                         (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10217'_368
                         ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                            (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v11))
                         ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            AgdaAny -> AgdaAny
v3
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                               AgdaAny
v6 AgdaAny
v7))
                         ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7)
                         ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                            ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7))
                         (let v12 :: T_IsPreorder_70
v12
                                = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                    ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                       T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                       (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                          AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                               (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10216'_370
                               ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                                  (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v12))
                               (T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
                                  ((T_IsPreorder_70 -> T_IsEquivalence_26)
-> AgdaAny -> T_IsEquivalence_26
forall a b. a -> b
coe
                                     T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                                     (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v12)))
                               ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7)
                               ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                  T_MaxOperator_128
v2 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7))
                               ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                  T_MaxOperator_128
v2 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7))
                               (let v13 :: T_IsPreorder_70
v13
                                      = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                          ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                             T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                             (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  (((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du__'8718'_492
                                     ((T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_stop_116
                                        (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v13))
                                     ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144
                                        T_MaxOperator_128
v2 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7))))
                               ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8804'y'8658'x'8852'y'8776'y_150
                                  T_MaxOperator_128
v2 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7) ((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny
v7 AgdaAny
v6 AgdaAny
v9))))
                         ((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v4
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                               AgdaAny
v6 AgdaAny
v7)
                            AgdaAny
v7
                            ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8805'y'8658'x'8851'y'8776'y_126
                               T_MinOperator_98
v1 AgdaAny
v6 AgdaAny
v7 AgdaAny
v9)))))
         T__'8846'__30
_ -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError)
-- Algebra.Construct.NaturalChoice.MinMaxOp.antimono-≤-distrib-⊔
d_antimono'45''8804''45'distrib'45''8852'_3274 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  (AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  AgdaAny -> AgdaAny -> AgdaAny
d_antimono'45''8804''45'distrib'45''8852'_3274 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_antimono'45''8804''45'distrib'45''8852'_3274 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5
                                               AgdaAny -> AgdaAny
v6 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v7 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v8 AgdaAny
v9 AgdaAny
v10
  = T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_antimono'45''8804''45'distrib'45''8852'_3274
      T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5 AgdaAny -> AgdaAny
v6 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v7 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v8 AgdaAny
v9 AgdaAny
v10
du_antimono'45''8804''45'distrib'45''8852'_3274 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  (AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  AgdaAny -> AgdaAny -> AgdaAny
du_antimono'45''8804''45'distrib'45''8852'_3274 :: T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_antimono'45''8804''45'distrib'45''8852'_3274 T_TotalPreorder_222
v0 T_MinOperator_98
v1 T_MaxOperator_128
v2 AgdaAny -> AgdaAny
v3 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v5
                                                AgdaAny
v6 AgdaAny
v7
  = let v8 :: t
v8
          = (T_IsTotalPreorder_124 -> AgdaAny -> AgdaAny -> T__'8846'__30)
-> T_IsTotalPreorder_124 -> AgdaAny -> AgdaAny -> t
forall a b. a -> b
coe
              T_IsTotalPreorder_124 -> AgdaAny -> AgdaAny -> T__'8846'__30
MAlonzo.Code.Relation.Binary.Structures.d_total_134
              (T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                 (T_TotalPreorder_222 -> T_TotalPreorder_222
forall a b. a -> b
coe T_TotalPreorder_222
v0))
              AgdaAny
v6 AgdaAny
v7 in
    AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (case AgdaAny -> T__'8846'__30
forall a b. a -> b
coe AgdaAny
forall a. a
v8 of
         MAlonzo.Code.Data.Sum.Base.C_inj'8321'_38 AgdaAny
v9
           -> let v10 :: b
v10
                    = T_SubRelation_60 -> b
forall a b. a -> b
coe
                        T_SubRelation_60
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_equalitySubRelation_152 in
              AgdaAny -> AgdaAny
forall a b. a -> b
coe
                ((T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                   T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_begin__126
                   (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v10)
                   ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      AgdaAny -> AgdaAny
v3
                      ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                         T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                         AgdaAny
v6 AgdaAny
v7))
                   ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                      ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7))
                   (let v11 :: T_IsPreorder_70
v11
                          = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                              ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                 T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                    AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                         (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10217'_368
                         ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                            (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v11))
                         ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            AgdaAny -> AgdaAny
v3
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                               AgdaAny
v6 AgdaAny
v7))
                         ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7)
                         ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                            ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7))
                         (let v12 :: T_IsPreorder_70
v12
                                = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                    ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                       T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                       (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                          AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                               (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10216'_370
                               ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                                  (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v12))
                               (T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
                                  ((T_IsPreorder_70 -> T_IsEquivalence_26)
-> AgdaAny -> T_IsEquivalence_26
forall a b. a -> b
coe
                                     T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                                     (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v12)))
                               ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7)
                               ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                  T_MinOperator_98
v1 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7))
                               ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                  T_MinOperator_98
v1 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7))
                               (let v13 :: T_IsPreorder_70
v13
                                      = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                          ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                             T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                             (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  (((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du__'8718'_492
                                     ((T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_stop_116
                                        (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v13))
                                     ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                        T_MinOperator_98
v1 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7))))
                               ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8805'y'8658'x'8851'y'8776'y_126
                                  T_MinOperator_98
v1 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7) ((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny
v6 AgdaAny
v7 AgdaAny
v9))))
                         ((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v4
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                               AgdaAny
v6 AgdaAny
v7)
                            AgdaAny
v7
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8804'y'8658'x'8852'y'8776'y_150
                               T_MaxOperator_128
v2 AgdaAny
v6 AgdaAny
v7 AgdaAny
v9)))))
         MAlonzo.Code.Data.Sum.Base.C_inj'8322'_42 AgdaAny
v9
           -> let v10 :: b
v10
                    = T_SubRelation_60 -> b
forall a b. a -> b
coe
                        T_SubRelation_60
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_equalitySubRelation_152 in
              AgdaAny -> AgdaAny
forall a b. a -> b
coe
                ((T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                   T_SubRelation_60 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_begin__126
                   (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v10)
                   ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      AgdaAny -> AgdaAny
v3
                      ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                         T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                         AgdaAny
v6 AgdaAny
v7))
                   ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                      ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7))
                   (let v11 :: T_IsPreorder_70
v11
                          = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                              ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                 T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                    AgdaAny -> AgdaAny
forall a b. a -> b
coe
                      (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                         (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10217'_368
                         ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                            (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v11))
                         ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            AgdaAny -> AgdaAny
v3
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                               AgdaAny
v6 AgdaAny
v7))
                         ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6)
                         ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                            ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7))
                         (let v12 :: T_IsPreorder_70
v12
                                = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                    ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                       T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                       (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                          AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                               (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8776''45''10216'_370
                               ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8776''45'go_106
                                  (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v12))
                               (T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
                                  ((T_IsPreorder_70 -> T_IsEquivalence_26)
-> AgdaAny -> T_IsEquivalence_26
forall a b. a -> b
coe
                                     T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                                     (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v12)))
                               ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6)
                               ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                  T_MinOperator_98
v1 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7))
                               ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                  T_MinOperator_98
v1 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7))
                               (let v13 :: T_IsPreorder_70
v13
                                      = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                          ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                             T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                             (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  (((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                     (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du__'8718'_492
                                     ((T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_stop_116
                                        (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v13))
                                     ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                        T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114
                                        T_MinOperator_98
v1 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7))))
                               ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                                  T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8804'y'8658'x'8851'y'8776'x_120
                                  T_MinOperator_98
v1 ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v6) ((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v3 AgdaAny
v7) ((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny
v7 AgdaAny
v6 AgdaAny
v9))))
                         ((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                            AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v4
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                               AgdaAny
v6 AgdaAny
v7)
                            AgdaAny
v6
                            ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                               T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d_x'8805'y'8658'x'8852'y'8776'x_156
                               T_MaxOperator_128
v2 AgdaAny
v6 AgdaAny
v7 AgdaAny
v9)))))
         T__'8846'__30
_ -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError)
-- Algebra.Construct.NaturalChoice.MinMaxOp.x⊓y≤x⊔y
d_x'8851'y'8804'x'8852'y_3318 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny
d_x'8851'y'8804'x'8852'y_3318 :: ()
-> ()
-> ()
-> T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8851'y'8804'x'8852'y_3318 ~()
v0 ~()
v1 ~()
v2 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny
v7
  = T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_x'8851'y'8804'x'8852'y_3318 T_TotalPreorder_222
v3 T_MinOperator_98
v4 T_MaxOperator_128
v5 AgdaAny
v6 AgdaAny
v7
du_x'8851'y'8804'x'8852'y_3318 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MinOperator_98 ->
  MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.T_MaxOperator_128 ->
  AgdaAny -> AgdaAny -> AgdaAny
du_x'8851'y'8804'x'8852'y_3318 :: T_TotalPreorder_222
-> T_MinOperator_98
-> T_MaxOperator_128
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_x'8851'y'8804'x'8852'y_3318 T_TotalPreorder_222
v0 T_MinOperator_98
v1 T_MaxOperator_128
v2 AgdaAny
v3 AgdaAny
v4
  = let v5 :: T_IsPreorder_70
v5
          = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
              ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                 T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                 (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
    AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_begin__46
         ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> T__IsRelatedTo__62 -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70
-> AgdaAny -> AgdaAny -> T__IsRelatedTo__62 -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_start_76
            (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v5))
         ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
            AgdaAny
v3 AgdaAny
v4)
         ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
            AgdaAny
v3 AgdaAny
v4)
         (let v6 :: T_IsPreorder_70
v6
                = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                    ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                       T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                       (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
               (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8764'_300
               ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8818''45'go_96
                  (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v6))
               ((T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8851'__114 T_MinOperator_98
v1
                  AgdaAny
v3 AgdaAny
v4)
               AgdaAny
v3
               ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                  AgdaAny
v3 AgdaAny
v4)
               (let v7 :: T_IsPreorder_70
v7
                      = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                          ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                             T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                             (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
                     (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du_step'45''8764'_300
                     ((T_IsPreorder_70
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> T__IsRelatedTo__62
 -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                        T_IsPreorder_70
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T__IsRelatedTo__62
-> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_'8818''45'go_96
                        (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v7))
                     AgdaAny
v3
                     ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                        T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                        AgdaAny
v3 AgdaAny
v4)
                     ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                        T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                        AgdaAny
v3 AgdaAny
v4)
                     (let v8 :: T_IsPreorder_70
v8
                            = T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132
                                ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
                                   T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
                                   (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)) in
                      AgdaAny -> AgdaAny
forall a b. a -> b
coe
                        (((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                           (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Reasoning.Syntax.du__'8718'_492
                           ((T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                              T_IsPreorder_70 -> AgdaAny -> T__IsRelatedTo__62
MAlonzo.Code.Relation.Binary.Reasoning.Base.Double.du_stop_116
                              (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v8))
                           ((T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                              T_MaxOperator_128 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.d__'8852'__144 T_MaxOperator_128
v2
                              AgdaAny
v3 AgdaAny
v4)))
                     ((T_TotalPreorder_222
 -> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                        T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_x'8851'y'8804'x_2808
                        ((T_TotalPreorder_222 -> T_TotalPreorder_222) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                           T_TotalPreorder_222 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd.du_totalPreorder_746
                           (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0))
                        ((T_MaxOperator_128 -> T_MinOperator_98) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                           T_MaxOperator_128 -> T_MinOperator_98
MAlonzo.Code.Algebra.Construct.NaturalChoice.Base.du_MaxOp'8658'MinOp_174
                           (T_MaxOperator_128 -> AgdaAny
forall a b. a -> b
coe T_MaxOperator_128
v2))
                        (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v4))))
               ((T_TotalPreorder_222
 -> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_TotalPreorder_222
-> T_MinOperator_98 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Algebra.Construct.NaturalChoice.MinOp.du_x'8851'y'8804'x_2808
                  (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0) (T_MinOperator_98 -> AgdaAny
forall a b. a -> b
coe T_MinOperator_98
v1) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v3) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v4)))))