{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE NoMonomorphismRestriction #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}

{-# OPTIONS_GHC -Wno-overlapping-patterns #-}

module MAlonzo.Code.Relation.Binary.Construct.Flip.EqAndOrd where

import MAlonzo.RTE (coe, erased, AgdaAny, addInt, subInt, mulInt,
                    quotInt, remInt, geqInt, ltInt, eqInt, add64, sub64, mul64, quot64,
                    rem64, lt64, eq64, word64FromNat, word64ToNat)
import qualified MAlonzo.RTE
import qualified Data.Text
import qualified MAlonzo.Code.Agda.Builtin.Sigma
import qualified MAlonzo.Code.Agda.Primitive
import qualified MAlonzo.Code.Data.Irrelevant
import qualified MAlonzo.Code.Data.Sum.Base
import qualified MAlonzo.Code.Relation.Binary.Bundles
import qualified MAlonzo.Code.Relation.Binary.Definitions
import qualified MAlonzo.Code.Relation.Binary.Structures
import qualified MAlonzo.Code.Relation.Nullary.Decidable.Core

-- Relation.Binary.Construct.Flip.EqAndOrd._.refl
d_refl_44 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
d_refl_44 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> (AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
d_refl_44 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~AgdaAny -> AgdaAny -> T_Level_18
v3 AgdaAny -> AgdaAny
v4 AgdaAny
v5 = (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_refl_44 AgdaAny -> AgdaAny
v4 AgdaAny
v5
du_refl_44 :: (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_refl_44 :: (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_refl_44 AgdaAny -> AgdaAny
v0 AgdaAny
v1 = (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v0 AgdaAny
v1
-- Relation.Binary.Construct.Flip.EqAndOrd._.sym
d_sym_48 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_sym_48 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_sym_48 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~AgdaAny -> AgdaAny -> T_Level_18
v3 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny
v5 AgdaAny
v6 = (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_sym_48 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny
v5 AgdaAny
v6
du_sym_48 ::
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_sym_48 :: (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_sym_48 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v0 AgdaAny
v1 AgdaAny
v2 = (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v0 AgdaAny
v2 AgdaAny
v1
-- Relation.Binary.Construct.Flip.EqAndOrd._.trans
d_trans_52 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_52 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_trans_52 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~AgdaAny -> AgdaAny -> T_Level_18
v3 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny
v5 AgdaAny
v6 AgdaAny
v7 AgdaAny
v8 AgdaAny
v9
  = (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_52 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny
v5 AgdaAny
v6 AgdaAny
v7 AgdaAny
v8 AgdaAny
v9
du_trans_52 ::
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_52 :: (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_52 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v0 AgdaAny
v1 AgdaAny
v2 AgdaAny
v3 AgdaAny
v4 AgdaAny
v5 = (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v0 AgdaAny
v3 AgdaAny
v2 AgdaAny
v1 AgdaAny
v5 AgdaAny
v4
-- Relation.Binary.Construct.Flip.EqAndOrd._.asym
d_asym_56 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  (AgdaAny ->
   AgdaAny ->
   AgdaAny ->
   AgdaAny -> MAlonzo.Code.Data.Irrelevant.T_Irrelevant_20) ->
  AgdaAny ->
  AgdaAny ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Data.Irrelevant.T_Irrelevant_20
d_asym_56 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> T_Irrelevant_20)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T_Irrelevant_20
d_asym_56 = T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> T_Irrelevant_20)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T_Irrelevant_20
forall a. a
erased
-- Relation.Binary.Construct.Flip.EqAndOrd._.total
d_total_60 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  (AgdaAny -> AgdaAny -> MAlonzo.Code.Data.Sum.Base.T__'8846'__30) ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Data.Sum.Base.T__'8846'__30
d_total_60 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> (AgdaAny -> AgdaAny -> T__'8846'__30)
-> AgdaAny
-> AgdaAny
-> T__'8846'__30
d_total_60 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~AgdaAny -> AgdaAny -> T_Level_18
v3 AgdaAny -> AgdaAny -> T__'8846'__30
v4 AgdaAny
v5 AgdaAny
v6 = (AgdaAny -> AgdaAny -> T__'8846'__30)
-> AgdaAny -> AgdaAny -> T__'8846'__30
du_total_60 AgdaAny -> AgdaAny -> T__'8846'__30
v4 AgdaAny
v5 AgdaAny
v6
du_total_60 ::
  (AgdaAny -> AgdaAny -> MAlonzo.Code.Data.Sum.Base.T__'8846'__30) ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Data.Sum.Base.T__'8846'__30
du_total_60 :: (AgdaAny -> AgdaAny -> T__'8846'__30)
-> AgdaAny -> AgdaAny -> T__'8846'__30
du_total_60 AgdaAny -> AgdaAny -> T__'8846'__30
v0 AgdaAny
v1 AgdaAny
v2 = (AgdaAny -> AgdaAny -> T__'8846'__30)
-> AgdaAny -> AgdaAny -> T__'8846'__30
forall a b. a -> b
coe AgdaAny -> AgdaAny -> T__'8846'__30
v0 AgdaAny
v2 AgdaAny
v1
-- Relation.Binary.Construct.Flip.EqAndOrd._.resp
d_resp_72 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> ()) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_resp_72 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> T_Level_18
-> (AgdaAny -> T_Level_18)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_resp_72 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~AgdaAny -> AgdaAny -> T_Level_18
v3 ~T_Level_18
v4 ~AgdaAny -> T_Level_18
v5 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v6 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v7 AgdaAny
v8 AgdaAny
v9 AgdaAny
v10
  = (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_resp_72 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v6 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v7 AgdaAny
v8 AgdaAny
v9 AgdaAny
v10
du_resp_72 ::
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_resp_72 :: (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_resp_72 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v0 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v1 AgdaAny
v2 AgdaAny
v3 AgdaAny
v4 = (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v1 AgdaAny
v2 AgdaAny
v3 ((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v0 AgdaAny
v3 AgdaAny
v2 AgdaAny
v4)
-- Relation.Binary.Construct.Flip.EqAndOrd._.max
d_max_82 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
d_max_82 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
d_max_82 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~AgdaAny -> AgdaAny -> T_Level_18
v3 ~AgdaAny
v4 AgdaAny -> AgdaAny
v5 = (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_max_82 AgdaAny -> AgdaAny
v5
du_max_82 :: (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_max_82 :: (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_max_82 AgdaAny -> AgdaAny
v0 = (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v0
-- Relation.Binary.Construct.Flip.EqAndOrd._.min
d_min_88 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  AgdaAny -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
d_min_88 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> AgdaAny
-> (AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
d_min_88 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~AgdaAny -> AgdaAny -> T_Level_18
v3 ~AgdaAny
v4 AgdaAny -> AgdaAny
v5 = (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_min_88 AgdaAny -> AgdaAny
v5
du_min_88 :: (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_min_88 :: (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_min_88 AgdaAny -> AgdaAny
v0 = (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v0
-- Relation.Binary.Construct.Flip.EqAndOrd._.reflexive
d_reflexive_106 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  (AgdaAny -> AgdaAny -> ()) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_reflexive_106 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_reflexive_106 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~T_Level_18
v3 ~AgdaAny -> AgdaAny -> T_Level_18
v4 ~AgdaAny -> AgdaAny -> T_Level_18
v5 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v6 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v7 AgdaAny
v8 AgdaAny
v9 AgdaAny
v10
  = (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_reflexive_106 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v6 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v7 AgdaAny
v8 AgdaAny
v9 AgdaAny
v10
du_reflexive_106 ::
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_reflexive_106 :: (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_reflexive_106 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v0 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v1 AgdaAny
v2 AgdaAny
v3 AgdaAny
v4 = (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v1 AgdaAny
v3 AgdaAny
v2 ((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v0 AgdaAny
v2 AgdaAny
v3 AgdaAny
v4)
-- Relation.Binary.Construct.Flip.EqAndOrd._.irrefl
d_irrefl_112 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  (AgdaAny -> AgdaAny -> ()) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  (AgdaAny ->
   AgdaAny ->
   AgdaAny ->
   AgdaAny -> MAlonzo.Code.Data.Irrelevant.T_Irrelevant_20) ->
  AgdaAny ->
  AgdaAny ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Data.Irrelevant.T_Irrelevant_20
d_irrefl_112 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> T_Irrelevant_20)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T_Irrelevant_20
d_irrefl_112 = T_Level_18
-> T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> T_Irrelevant_20)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T_Irrelevant_20
forall a. a
erased
-- Relation.Binary.Construct.Flip.EqAndOrd._.antisym
d_antisym_122 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  (AgdaAny -> AgdaAny -> ()) ->
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_antisym_122 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_antisym_122 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~T_Level_18
v3 ~AgdaAny -> AgdaAny -> T_Level_18
v4 ~AgdaAny -> AgdaAny -> T_Level_18
v5 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v6 AgdaAny
v7 AgdaAny
v8 AgdaAny
v9 AgdaAny
v10
  = (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_antisym_122 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v6 AgdaAny
v7 AgdaAny
v8 AgdaAny
v9 AgdaAny
v10
du_antisym_122 ::
  (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_antisym_122 :: (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_antisym_122 AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v0 AgdaAny
v1 AgdaAny
v2 AgdaAny
v3 AgdaAny
v4 = (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
v0 AgdaAny
v1 AgdaAny
v2 AgdaAny
v4 AgdaAny
v3
-- Relation.Binary.Construct.Flip.EqAndOrd._.compare
d_compare_126 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  (AgdaAny -> AgdaAny -> ()) ->
  (AgdaAny ->
   AgdaAny -> MAlonzo.Code.Relation.Binary.Definitions.T_Tri_158) ->
  AgdaAny ->
  AgdaAny -> MAlonzo.Code.Relation.Binary.Definitions.T_Tri_158
d_compare_126 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> (AgdaAny -> AgdaAny -> T_Tri_158)
-> AgdaAny
-> AgdaAny
-> T_Tri_158
d_compare_126 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~T_Level_18
v3 ~AgdaAny -> AgdaAny -> T_Level_18
v4 ~AgdaAny -> AgdaAny -> T_Level_18
v5 AgdaAny -> AgdaAny -> T_Tri_158
v6 AgdaAny
v7 AgdaAny
v8
  = (AgdaAny -> AgdaAny -> T_Tri_158)
-> AgdaAny -> AgdaAny -> T_Tri_158
du_compare_126 AgdaAny -> AgdaAny -> T_Tri_158
v6 AgdaAny
v7 AgdaAny
v8
du_compare_126 ::
  (AgdaAny ->
   AgdaAny -> MAlonzo.Code.Relation.Binary.Definitions.T_Tri_158) ->
  AgdaAny ->
  AgdaAny -> MAlonzo.Code.Relation.Binary.Definitions.T_Tri_158
du_compare_126 :: (AgdaAny -> AgdaAny -> T_Tri_158)
-> AgdaAny -> AgdaAny -> T_Tri_158
du_compare_126 AgdaAny -> AgdaAny -> T_Tri_158
v0 AgdaAny
v1 AgdaAny
v2
  = let v3 :: t
v3 = (AgdaAny -> AgdaAny -> T_Tri_158) -> AgdaAny -> AgdaAny -> t
forall a b. a -> b
coe AgdaAny -> AgdaAny -> T_Tri_158
v0 AgdaAny
v1 AgdaAny
v2 in
    AgdaAny -> T_Tri_158
forall a b. a -> b
coe
      (case AgdaAny -> T_Tri_158
forall a b. a -> b
coe AgdaAny
forall a. a
v3 of
         MAlonzo.Code.Relation.Binary.Definitions.C_tri'60'_172 AgdaAny
v4
           -> (AgdaAny -> T_Tri_158) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> T_Tri_158
MAlonzo.Code.Relation.Binary.Definitions.C_tri'62'_188 AgdaAny
v4
         MAlonzo.Code.Relation.Binary.Definitions.C_tri'8776'_180 AgdaAny
v5
           -> (AgdaAny -> T_Tri_158) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> T_Tri_158
MAlonzo.Code.Relation.Binary.Definitions.C_tri'8776'_180 AgdaAny
v5
         MAlonzo.Code.Relation.Binary.Definitions.C_tri'62'_188 AgdaAny
v6
           -> (AgdaAny -> T_Tri_158) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> T_Tri_158
MAlonzo.Code.Relation.Binary.Definitions.C_tri'60'_172 AgdaAny
v6
         T_Tri_158
_ -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError)
-- Relation.Binary.Construct.Flip.EqAndOrd._.resp₂
d_resp'8322'_188 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  (AgdaAny -> AgdaAny -> ()) ->
  MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14 ->
  MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_resp'8322'_188 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> T_Σ_14
-> T_Σ_14
d_resp'8322'_188 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~T_Level_18
v3 ~AgdaAny -> AgdaAny -> T_Level_18
v4 ~AgdaAny -> AgdaAny -> T_Level_18
v5 T_Σ_14
v6 = T_Σ_14 -> T_Σ_14
du_resp'8322'_188 T_Σ_14
v6
du_resp'8322'_188 ::
  MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14 ->
  MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_resp'8322'_188 :: T_Σ_14 -> T_Σ_14
du_resp'8322'_188 T_Σ_14
v0
  = case T_Σ_14 -> T_Σ_14
forall a b. a -> b
coe T_Σ_14
v0 of
      MAlonzo.Code.Agda.Builtin.Sigma.C__'44'__32 AgdaAny
v1 AgdaAny
v2
        -> (AgdaAny -> AgdaAny -> T_Σ_14) -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
             AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Agda.Builtin.Sigma.C__'44'__32 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v2) (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v1)
      T_Σ_14
_ -> T_Σ_14
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Construct.Flip.EqAndOrd._.dec
d_dec_206 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  (AgdaAny ->
   AgdaAny ->
   MAlonzo.Code.Relation.Nullary.Decidable.Core.T_Dec_20) ->
  AgdaAny ->
  AgdaAny -> MAlonzo.Code.Relation.Nullary.Decidable.Core.T_Dec_20
d_dec_206 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> (AgdaAny -> AgdaAny -> T_Dec_20)
-> AgdaAny
-> AgdaAny
-> T_Dec_20
d_dec_206 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~T_Level_18
v3 ~T_Level_18
v4 ~AgdaAny -> AgdaAny -> T_Level_18
v5 AgdaAny -> AgdaAny -> T_Dec_20
v6 AgdaAny
v7 AgdaAny
v8 = (AgdaAny -> AgdaAny -> T_Dec_20) -> AgdaAny -> AgdaAny -> T_Dec_20
du_dec_206 AgdaAny -> AgdaAny -> T_Dec_20
v6 AgdaAny
v7 AgdaAny
v8
du_dec_206 ::
  (AgdaAny ->
   AgdaAny ->
   MAlonzo.Code.Relation.Nullary.Decidable.Core.T_Dec_20) ->
  AgdaAny ->
  AgdaAny -> MAlonzo.Code.Relation.Nullary.Decidable.Core.T_Dec_20
du_dec_206 :: (AgdaAny -> AgdaAny -> T_Dec_20) -> AgdaAny -> AgdaAny -> T_Dec_20
du_dec_206 AgdaAny -> AgdaAny -> T_Dec_20
v0 AgdaAny
v1 AgdaAny
v2 = (AgdaAny -> AgdaAny -> T_Dec_20) -> AgdaAny -> AgdaAny -> T_Dec_20
forall a b. a -> b
coe AgdaAny -> AgdaAny -> T_Dec_20
v0 AgdaAny
v2 AgdaAny
v1
-- Relation.Binary.Construct.Flip.EqAndOrd.isEquivalence
d_isEquivalence_210 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsEquivalence_26 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsEquivalence_26
d_isEquivalence_210 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> T_IsEquivalence_26
-> T_IsEquivalence_26
d_isEquivalence_210 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~AgdaAny -> AgdaAny -> T_Level_18
v3 T_IsEquivalence_26
v4 = T_IsEquivalence_26 -> T_IsEquivalence_26
du_isEquivalence_210 T_IsEquivalence_26
v4
du_isEquivalence_210 ::
  MAlonzo.Code.Relation.Binary.Structures.T_IsEquivalence_26 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsEquivalence_26
du_isEquivalence_210 :: T_IsEquivalence_26 -> T_IsEquivalence_26
du_isEquivalence_210 T_IsEquivalence_26
v0
  = ((AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> T_IsEquivalence_26)
-> AgdaAny -> AgdaAny -> AgdaAny -> T_IsEquivalence_26
forall a b. a -> b
coe
      (AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.C_IsEquivalence'46'constructor_745
      (((AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
du_refl_44
         ((T_IsEquivalence_26 -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_IsEquivalence_26 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_refl_34 (T_IsEquivalence_26 -> AgdaAny
forall a b. a -> b
coe T_IsEquivalence_26
v0)))
      (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_sym_48
         ((T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_sym_36 (T_IsEquivalence_26 -> AgdaAny
forall a b. a -> b
coe T_IsEquivalence_26
v0)))
      (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_52
         ((T_IsEquivalence_26
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_IsEquivalence_26
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_38 (T_IsEquivalence_26 -> AgdaAny
forall a b. a -> b
coe T_IsEquivalence_26
v0)))
-- Relation.Binary.Construct.Flip.EqAndOrd.isDecEquivalence
d_isDecEquivalence_232 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsDecEquivalence_44 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsDecEquivalence_44
d_isDecEquivalence_232 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> T_IsDecEquivalence_44
-> T_IsDecEquivalence_44
d_isDecEquivalence_232 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~AgdaAny -> AgdaAny -> T_Level_18
v3 T_IsDecEquivalence_44
v4
  = T_IsDecEquivalence_44 -> T_IsDecEquivalence_44
du_isDecEquivalence_232 T_IsDecEquivalence_44
v4
du_isDecEquivalence_232 ::
  MAlonzo.Code.Relation.Binary.Structures.T_IsDecEquivalence_44 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsDecEquivalence_44
du_isDecEquivalence_232 :: T_IsDecEquivalence_44 -> T_IsDecEquivalence_44
du_isDecEquivalence_232 T_IsDecEquivalence_44
v0
  = (T_IsEquivalence_26
 -> (AgdaAny -> AgdaAny -> T_Dec_20) -> T_IsDecEquivalence_44)
-> AgdaAny -> AgdaAny -> T_IsDecEquivalence_44
forall a b. a -> b
coe
      T_IsEquivalence_26
-> (AgdaAny -> AgdaAny -> T_Dec_20) -> T_IsDecEquivalence_44
MAlonzo.Code.Relation.Binary.Structures.C_IsDecEquivalence'46'constructor_3083
      ((T_IsEquivalence_26 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsEquivalence_26 -> T_IsEquivalence_26
du_isEquivalence_210
         ((T_IsDecEquivalence_44 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsDecEquivalence_44 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_50
            (T_IsDecEquivalence_44 -> AgdaAny
forall a b. a -> b
coe T_IsDecEquivalence_44
v0)))
      (((AgdaAny -> AgdaAny -> T_Dec_20)
 -> AgdaAny -> AgdaAny -> T_Dec_20)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (AgdaAny -> AgdaAny -> T_Dec_20) -> AgdaAny -> AgdaAny -> T_Dec_20
du_dec_206
         ((T_IsDecEquivalence_44 -> AgdaAny -> AgdaAny -> T_Dec_20)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsDecEquivalence_44 -> AgdaAny -> AgdaAny -> T_Dec_20
MAlonzo.Code.Relation.Binary.Structures.d__'8799'__52 (T_IsDecEquivalence_44 -> AgdaAny
forall a b. a -> b
coe T_IsDecEquivalence_44
v0)))
-- Relation.Binary.Construct.Flip.EqAndOrd.isPreorder
d_isPreorder_258 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPreorder_70 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPreorder_70
d_isPreorder_258 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> T_IsPreorder_70
-> T_IsPreorder_70
d_isPreorder_258 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~AgdaAny -> AgdaAny -> T_Level_18
v3 ~T_Level_18
v4 ~AgdaAny -> AgdaAny -> T_Level_18
v5 T_IsPreorder_70
v6 = T_IsPreorder_70 -> T_IsPreorder_70
du_isPreorder_258 T_IsPreorder_70
v6
du_isPreorder_258 ::
  MAlonzo.Code.Relation.Binary.Structures.T_IsPreorder_70 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPreorder_70
du_isPreorder_258 :: T_IsPreorder_70 -> T_IsPreorder_70
du_isPreorder_258 T_IsPreorder_70
v0
  = (T_IsEquivalence_26
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> T_IsPreorder_70)
-> AgdaAny -> AgdaAny -> AgdaAny -> T_IsPreorder_70
forall a b. a -> b
coe
      T_IsEquivalence_26
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.C_IsPreorder'46'constructor_4003
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v0))
      (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny
 -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
du_reflexive_106
         ((T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
            ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
               (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v0)))
         ((T_IsPreorder_70 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_reflexive_82 (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v0)))
      (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_52
         ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_84 (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v0)))
-- Relation.Binary.Construct.Flip.EqAndOrd.isTotalPreorder
d_isTotalPreorder_304 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsTotalPreorder_124 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsTotalPreorder_124
d_isTotalPreorder_304 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> T_IsTotalPreorder_124
-> T_IsTotalPreorder_124
d_isTotalPreorder_304 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~AgdaAny -> AgdaAny -> T_Level_18
v3 ~T_Level_18
v4 ~AgdaAny -> AgdaAny -> T_Level_18
v5 T_IsTotalPreorder_124
v6
  = T_IsTotalPreorder_124 -> T_IsTotalPreorder_124
du_isTotalPreorder_304 T_IsTotalPreorder_124
v6
du_isTotalPreorder_304 ::
  MAlonzo.Code.Relation.Binary.Structures.T_IsTotalPreorder_124 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsTotalPreorder_124
du_isTotalPreorder_304 :: T_IsTotalPreorder_124 -> T_IsTotalPreorder_124
du_isTotalPreorder_304 T_IsTotalPreorder_124
v0
  = (T_IsPreorder_70
 -> (AgdaAny -> AgdaAny -> T__'8846'__30) -> T_IsTotalPreorder_124)
-> AgdaAny -> AgdaAny -> T_IsTotalPreorder_124
forall a b. a -> b
coe
      T_IsPreorder_70
-> (AgdaAny -> AgdaAny -> T__'8846'__30) -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Structures.C_IsTotalPreorder'46'constructor_8325
      ((T_IsPreorder_70 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsPreorder_70
du_isPreorder_258
         ((T_IsTotalPreorder_124 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsTotalPreorder_124 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_132 (T_IsTotalPreorder_124 -> AgdaAny
forall a b. a -> b
coe T_IsTotalPreorder_124
v0)))
      (((AgdaAny -> AgdaAny -> T__'8846'__30)
 -> AgdaAny -> AgdaAny -> T__'8846'__30)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (AgdaAny -> AgdaAny -> T__'8846'__30)
-> AgdaAny -> AgdaAny -> T__'8846'__30
du_total_60
         ((T_IsTotalPreorder_124 -> AgdaAny -> AgdaAny -> T__'8846'__30)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_IsTotalPreorder_124 -> AgdaAny -> AgdaAny -> T__'8846'__30
MAlonzo.Code.Relation.Binary.Structures.d_total_134 (T_IsTotalPreorder_124 -> AgdaAny
forall a b. a -> b
coe T_IsTotalPreorder_124
v0)))
-- Relation.Binary.Construct.Flip.EqAndOrd.isPartialOrder
d_isPartialOrder_350 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialOrder_174 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialOrder_174
d_isPartialOrder_350 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> T_IsPartialOrder_174
-> T_IsPartialOrder_174
d_isPartialOrder_350 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~AgdaAny -> AgdaAny -> T_Level_18
v3 ~T_Level_18
v4 ~AgdaAny -> AgdaAny -> T_Level_18
v5 T_IsPartialOrder_174
v6
  = T_IsPartialOrder_174 -> T_IsPartialOrder_174
du_isPartialOrder_350 T_IsPartialOrder_174
v6
du_isPartialOrder_350 ::
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialOrder_174 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialOrder_174
du_isPartialOrder_350 :: T_IsPartialOrder_174 -> T_IsPartialOrder_174
du_isPartialOrder_350 T_IsPartialOrder_174
v0
  = (T_IsPreorder_70
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny -> T_IsPartialOrder_174
forall a b. a -> b
coe
      T_IsPreorder_70
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Structures.C_IsPartialOrder'46'constructor_9853
      ((T_IsPreorder_70 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsPreorder_70
du_isPreorder_258
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182 (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v0)))
      (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_antisym_122
         ((T_IsPartialOrder_174
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_antisym_184 (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v0)))
-- Relation.Binary.Construct.Flip.EqAndOrd.isTotalOrder
d_isTotalOrder_398 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsTotalOrder_404 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsTotalOrder_404
d_isTotalOrder_398 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> T_IsTotalOrder_404
-> T_IsTotalOrder_404
d_isTotalOrder_398 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~AgdaAny -> AgdaAny -> T_Level_18
v3 ~T_Level_18
v4 ~AgdaAny -> AgdaAny -> T_Level_18
v5 T_IsTotalOrder_404
v6
  = T_IsTotalOrder_404 -> T_IsTotalOrder_404
du_isTotalOrder_398 T_IsTotalOrder_404
v6
du_isTotalOrder_398 ::
  MAlonzo.Code.Relation.Binary.Structures.T_IsTotalOrder_404 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsTotalOrder_404
du_isTotalOrder_398 :: T_IsTotalOrder_404 -> T_IsTotalOrder_404
du_isTotalOrder_398 T_IsTotalOrder_404
v0
  = (T_IsPartialOrder_174
 -> (AgdaAny -> AgdaAny -> T__'8846'__30) -> T_IsTotalOrder_404)
-> AgdaAny -> AgdaAny -> T_IsTotalOrder_404
forall a b. a -> b
coe
      T_IsPartialOrder_174
-> (AgdaAny -> AgdaAny -> T__'8846'__30) -> T_IsTotalOrder_404
MAlonzo.Code.Relation.Binary.Structures.C_IsTotalOrder'46'constructor_20555
      ((T_IsPartialOrder_174 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPartialOrder_174
du_isPartialOrder_350
         ((T_IsTotalOrder_404 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsTotalOrder_404 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Structures.d_isPartialOrder_412
            (T_IsTotalOrder_404 -> AgdaAny
forall a b. a -> b
coe T_IsTotalOrder_404
v0)))
      (((AgdaAny -> AgdaAny -> T__'8846'__30)
 -> AgdaAny -> AgdaAny -> T__'8846'__30)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (AgdaAny -> AgdaAny -> T__'8846'__30)
-> AgdaAny -> AgdaAny -> T__'8846'__30
du_total_60
         ((T_IsTotalOrder_404 -> AgdaAny -> AgdaAny -> T__'8846'__30)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_IsTotalOrder_404 -> AgdaAny -> AgdaAny -> T__'8846'__30
MAlonzo.Code.Relation.Binary.Structures.d_total_414 (T_IsTotalOrder_404 -> AgdaAny
forall a b. a -> b
coe T_IsTotalOrder_404
v0)))
-- Relation.Binary.Construct.Flip.EqAndOrd.isDecTotalOrder
d_isDecTotalOrder_450 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsDecTotalOrder_460 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsDecTotalOrder_460
d_isDecTotalOrder_450 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> T_IsDecTotalOrder_460
-> T_IsDecTotalOrder_460
d_isDecTotalOrder_450 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~AgdaAny -> AgdaAny -> T_Level_18
v3 ~T_Level_18
v4 ~AgdaAny -> AgdaAny -> T_Level_18
v5 T_IsDecTotalOrder_460
v6
  = T_IsDecTotalOrder_460 -> T_IsDecTotalOrder_460
du_isDecTotalOrder_450 T_IsDecTotalOrder_460
v6
du_isDecTotalOrder_450 ::
  MAlonzo.Code.Relation.Binary.Structures.T_IsDecTotalOrder_460 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsDecTotalOrder_460
du_isDecTotalOrder_450 :: T_IsDecTotalOrder_460 -> T_IsDecTotalOrder_460
du_isDecTotalOrder_450 T_IsDecTotalOrder_460
v0
  = (T_IsTotalOrder_404
 -> (AgdaAny -> AgdaAny -> T_Dec_20)
 -> (AgdaAny -> AgdaAny -> T_Dec_20)
 -> T_IsDecTotalOrder_460)
-> AgdaAny -> AgdaAny -> AgdaAny -> T_IsDecTotalOrder_460
forall a b. a -> b
coe
      T_IsTotalOrder_404
-> (AgdaAny -> AgdaAny -> T_Dec_20)
-> (AgdaAny -> AgdaAny -> T_Dec_20)
-> T_IsDecTotalOrder_460
MAlonzo.Code.Relation.Binary.Structures.C_IsDecTotalOrder'46'constructor_22695
      ((T_IsTotalOrder_404 -> T_IsTotalOrder_404) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsTotalOrder_404 -> T_IsTotalOrder_404
du_isTotalOrder_398
         ((T_IsDecTotalOrder_460 -> T_IsTotalOrder_404) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsDecTotalOrder_460 -> T_IsTotalOrder_404
MAlonzo.Code.Relation.Binary.Structures.d_isTotalOrder_470
            (T_IsDecTotalOrder_460 -> AgdaAny
forall a b. a -> b
coe T_IsDecTotalOrder_460
v0)))
      ((T_IsDecTotalOrder_460 -> AgdaAny -> AgdaAny -> T_Dec_20)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsDecTotalOrder_460 -> AgdaAny -> AgdaAny -> T_Dec_20
MAlonzo.Code.Relation.Binary.Structures.d__'8799'__472 (T_IsDecTotalOrder_460 -> AgdaAny
forall a b. a -> b
coe T_IsDecTotalOrder_460
v0))
      (((AgdaAny -> AgdaAny -> T_Dec_20)
 -> AgdaAny -> AgdaAny -> T_Dec_20)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (AgdaAny -> AgdaAny -> T_Dec_20) -> AgdaAny -> AgdaAny -> T_Dec_20
du_dec_206
         ((T_IsDecTotalOrder_460 -> AgdaAny -> AgdaAny -> T_Dec_20)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsDecTotalOrder_460 -> AgdaAny -> AgdaAny -> T_Dec_20
MAlonzo.Code.Relation.Binary.Structures.d__'8804''63'__474
            (T_IsDecTotalOrder_460 -> AgdaAny
forall a b. a -> b
coe T_IsDecTotalOrder_460
v0)))
-- Relation.Binary.Construct.Flip.EqAndOrd.isStrictPartialOrder
d_isStrictPartialOrder_516 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsStrictPartialOrder_290 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsStrictPartialOrder_290
d_isStrictPartialOrder_516 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> T_IsStrictPartialOrder_290
-> T_IsStrictPartialOrder_290
d_isStrictPartialOrder_516 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~AgdaAny -> AgdaAny -> T_Level_18
v3 ~T_Level_18
v4 ~AgdaAny -> AgdaAny -> T_Level_18
v5 T_IsStrictPartialOrder_290
v6
  = T_IsStrictPartialOrder_290 -> T_IsStrictPartialOrder_290
du_isStrictPartialOrder_516 T_IsStrictPartialOrder_290
v6
du_isStrictPartialOrder_516 ::
  MAlonzo.Code.Relation.Binary.Structures.T_IsStrictPartialOrder_290 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsStrictPartialOrder_290
du_isStrictPartialOrder_516 :: T_IsStrictPartialOrder_290 -> T_IsStrictPartialOrder_290
du_isStrictPartialOrder_516 T_IsStrictPartialOrder_290
v0
  = (T_IsEquivalence_26
 -> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> T_Σ_14
 -> T_IsStrictPartialOrder_290)
-> T_IsEquivalence_26
-> AgdaAny
-> AgdaAny
-> T_IsStrictPartialOrder_290
forall a b. a -> b
coe
      T_IsEquivalence_26
-> (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_Σ_14
-> T_IsStrictPartialOrder_290
MAlonzo.Code.Relation.Binary.Structures.C_IsStrictPartialOrder'46'constructor_14045
      (T_IsStrictPartialOrder_290 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_302
         (T_IsStrictPartialOrder_290 -> T_IsStrictPartialOrder_290
forall a b. a -> b
coe T_IsStrictPartialOrder_290
v0))
      (((AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_52
         ((T_IsStrictPartialOrder_290
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_IsStrictPartialOrder_290
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_306 (T_IsStrictPartialOrder_290 -> AgdaAny
forall a b. a -> b
coe T_IsStrictPartialOrder_290
v0)))
      ((T_Σ_14 -> T_Σ_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_Σ_14 -> T_Σ_14
du_resp'8322'_188
         ((T_IsStrictPartialOrder_290 -> T_Σ_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsStrictPartialOrder_290 -> T_Σ_14
MAlonzo.Code.Relation.Binary.Structures.d_'60''45'resp'45''8776'_308
            (T_IsStrictPartialOrder_290 -> AgdaAny
forall a b. a -> b
coe T_IsStrictPartialOrder_290
v0)))
-- Relation.Binary.Construct.Flip.EqAndOrd.isStrictTotalOrder
d_isStrictTotalOrder_554 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  () ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  (AgdaAny -> AgdaAny -> ()) ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsStrictTotalOrder_534 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsStrictTotalOrder_534
d_isStrictTotalOrder_554 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> T_Level_18
-> (AgdaAny -> AgdaAny -> T_Level_18)
-> T_IsStrictTotalOrder_534
-> T_IsStrictTotalOrder_534
d_isStrictTotalOrder_554 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 ~AgdaAny -> AgdaAny -> T_Level_18
v3 ~T_Level_18
v4 ~AgdaAny -> AgdaAny -> T_Level_18
v5 T_IsStrictTotalOrder_534
v6
  = T_IsStrictTotalOrder_534 -> T_IsStrictTotalOrder_534
du_isStrictTotalOrder_554 T_IsStrictTotalOrder_534
v6
du_isStrictTotalOrder_554 ::
  MAlonzo.Code.Relation.Binary.Structures.T_IsStrictTotalOrder_534 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsStrictTotalOrder_534
du_isStrictTotalOrder_554 :: T_IsStrictTotalOrder_534 -> T_IsStrictTotalOrder_534
du_isStrictTotalOrder_554 T_IsStrictTotalOrder_534
v0
  = (T_IsStrictPartialOrder_290
 -> (AgdaAny -> AgdaAny -> T_Tri_158) -> T_IsStrictTotalOrder_534)
-> AgdaAny -> AgdaAny -> T_IsStrictTotalOrder_534
forall a b. a -> b
coe
      T_IsStrictPartialOrder_290
-> (AgdaAny -> AgdaAny -> T_Tri_158) -> T_IsStrictTotalOrder_534
MAlonzo.Code.Relation.Binary.Structures.C_IsStrictTotalOrder'46'constructor_24953
      ((T_IsStrictPartialOrder_290 -> T_IsStrictPartialOrder_290)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsStrictPartialOrder_290 -> T_IsStrictPartialOrder_290
du_isStrictPartialOrder_516
         ((T_IsStrictTotalOrder_534 -> T_IsStrictPartialOrder_290)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsStrictTotalOrder_534 -> T_IsStrictPartialOrder_290
MAlonzo.Code.Relation.Binary.Structures.d_isStrictPartialOrder_542
            (T_IsStrictTotalOrder_534 -> AgdaAny
forall a b. a -> b
coe T_IsStrictTotalOrder_534
v0)))
      (((AgdaAny -> AgdaAny -> T_Tri_158)
 -> AgdaAny -> AgdaAny -> T_Tri_158)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (AgdaAny -> AgdaAny -> T_Tri_158)
-> AgdaAny -> AgdaAny -> T_Tri_158
du_compare_126
         ((T_IsStrictTotalOrder_534 -> AgdaAny -> AgdaAny -> T_Tri_158)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsStrictTotalOrder_534 -> AgdaAny -> AgdaAny -> T_Tri_158
MAlonzo.Code.Relation.Binary.Structures.d_compare_544 (T_IsStrictTotalOrder_534 -> AgdaAny
forall a b. a -> b
coe T_IsStrictTotalOrder_534
v0)))
-- Relation.Binary.Construct.Flip.EqAndOrd.setoid
d_setoid_610 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Setoid_44 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Setoid_44
d_setoid_610 :: T_Level_18 -> T_Level_18 -> T_Setoid_44 -> T_Setoid_44
d_setoid_610 ~T_Level_18
v0 ~T_Level_18
v1 T_Setoid_44
v2 = T_Setoid_44 -> T_Setoid_44
du_setoid_610 T_Setoid_44
v2
du_setoid_610 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_Setoid_44 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Setoid_44
du_setoid_610 :: T_Setoid_44 -> T_Setoid_44
du_setoid_610 T_Setoid_44
v0
  = (T_IsEquivalence_26 -> T_Setoid_44) -> AgdaAny -> T_Setoid_44
forall a b. a -> b
coe
      T_IsEquivalence_26 -> T_Setoid_44
MAlonzo.Code.Relation.Binary.Bundles.C_Setoid'46'constructor_733
      ((T_IsEquivalence_26 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsEquivalence_26 -> T_IsEquivalence_26
du_isEquivalence_210
         ((T_Setoid_44 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_Setoid_44 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Bundles.d_isEquivalence_60 (T_Setoid_44 -> AgdaAny
forall a b. a -> b
coe T_Setoid_44
v0)))
-- Relation.Binary.Construct.Flip.EqAndOrd.decSetoid
d_decSetoid_640 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_DecSetoid_84 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_DecSetoid_84
d_decSetoid_640 :: T_Level_18 -> T_Level_18 -> T_DecSetoid_84 -> T_DecSetoid_84
d_decSetoid_640 ~T_Level_18
v0 ~T_Level_18
v1 T_DecSetoid_84
v2 = T_DecSetoid_84 -> T_DecSetoid_84
du_decSetoid_640 T_DecSetoid_84
v2
du_decSetoid_640 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_DecSetoid_84 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_DecSetoid_84
du_decSetoid_640 :: T_DecSetoid_84 -> T_DecSetoid_84
du_decSetoid_640 T_DecSetoid_84
v0
  = (T_IsDecEquivalence_44 -> T_DecSetoid_84)
-> AgdaAny -> T_DecSetoid_84
forall a b. a -> b
coe
      T_IsDecEquivalence_44 -> T_DecSetoid_84
MAlonzo.Code.Relation.Binary.Bundles.C_DecSetoid'46'constructor_1389
      ((T_IsDecEquivalence_44 -> T_IsDecEquivalence_44)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsDecEquivalence_44 -> T_IsDecEquivalence_44
du_isDecEquivalence_232
         ((T_DecSetoid_84 -> T_IsDecEquivalence_44) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_DecSetoid_84 -> T_IsDecEquivalence_44
MAlonzo.Code.Relation.Binary.Bundles.d_isDecEquivalence_100
            (T_DecSetoid_84 -> AgdaAny
forall a b. a -> b
coe T_DecSetoid_84
v0)))
-- Relation.Binary.Construct.Flip.EqAndOrd.preorder
d_preorder_676 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132
d_preorder_676 :: T_Level_18
-> T_Level_18 -> T_Level_18 -> T_Preorder_132 -> T_Preorder_132
d_preorder_676 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 T_Preorder_132
v3 = T_Preorder_132 -> T_Preorder_132
du_preorder_676 T_Preorder_132
v3
du_preorder_676 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132
du_preorder_676 :: T_Preorder_132 -> T_Preorder_132
du_preorder_676 T_Preorder_132
v0
  = (T_IsPreorder_70 -> T_Preorder_132) -> AgdaAny -> T_Preorder_132
forall a b. a -> b
coe
      T_IsPreorder_70 -> T_Preorder_132
MAlonzo.Code.Relation.Binary.Bundles.C_Preorder'46'constructor_2267
      ((T_IsPreorder_70 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsPreorder_70
du_isPreorder_258
         ((T_Preorder_132 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_Preorder_132 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Bundles.d_isPreorder_154 (T_Preorder_132 -> AgdaAny
forall a b. a -> b
coe T_Preorder_132
v0)))
-- Relation.Binary.Construct.Flip.EqAndOrd.totalPreorder
d_totalPreorder_746 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222
d_totalPreorder_746 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> T_TotalPreorder_222
-> T_TotalPreorder_222
d_totalPreorder_746 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 T_TotalPreorder_222
v3 = T_TotalPreorder_222 -> T_TotalPreorder_222
du_totalPreorder_746 T_TotalPreorder_222
v3
du_totalPreorder_746 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalPreorder_222
du_totalPreorder_746 :: T_TotalPreorder_222 -> T_TotalPreorder_222
du_totalPreorder_746 T_TotalPreorder_222
v0
  = (T_IsTotalPreorder_124 -> T_TotalPreorder_222)
-> AgdaAny -> T_TotalPreorder_222
forall a b. a -> b
coe
      T_IsTotalPreorder_124 -> T_TotalPreorder_222
MAlonzo.Code.Relation.Binary.Bundles.C_TotalPreorder'46'constructor_4573
      ((T_IsTotalPreorder_124 -> T_IsTotalPreorder_124)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsTotalPreorder_124 -> T_IsTotalPreorder_124
du_isTotalPreorder_304
         ((T_TotalPreorder_222 -> T_IsTotalPreorder_124)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_TotalPreorder_222 -> T_IsTotalPreorder_124
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalPreorder_244
            (T_TotalPreorder_222 -> AgdaAny
forall a b. a -> b
coe T_TotalPreorder_222
v0)))
-- Relation.Binary.Construct.Flip.EqAndOrd.poset
d_poset_822 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314
d_poset_822 :: T_Level_18
-> T_Level_18 -> T_Level_18 -> T_Poset_314 -> T_Poset_314
d_poset_822 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 T_Poset_314
v3 = T_Poset_314 -> T_Poset_314
du_poset_822 T_Poset_314
v3
du_poset_822 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314
du_poset_822 :: T_Poset_314 -> T_Poset_314
du_poset_822 T_Poset_314
v0
  = (T_IsPartialOrder_174 -> T_Poset_314) -> AgdaAny -> T_Poset_314
forall a b. a -> b
coe
      T_IsPartialOrder_174 -> T_Poset_314
MAlonzo.Code.Relation.Binary.Bundles.C_Poset'46'constructor_6389
      ((T_IsPartialOrder_174 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPartialOrder_174
du_isPartialOrder_350
         ((T_Poset_314 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_Poset_314 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Bundles.d_isPartialOrder_336
            (T_Poset_314 -> AgdaAny
forall a b. a -> b
coe T_Poset_314
v0)))
-- Relation.Binary.Construct.Flip.EqAndOrd.totalOrder
d_totalOrder_898 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalOrder_764 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalOrder_764
d_totalOrder_898 :: T_Level_18
-> T_Level_18 -> T_Level_18 -> T_TotalOrder_764 -> T_TotalOrder_764
d_totalOrder_898 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 T_TotalOrder_764
v3 = T_TotalOrder_764 -> T_TotalOrder_764
du_totalOrder_898 T_TotalOrder_764
v3
du_totalOrder_898 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalOrder_764 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_TotalOrder_764
du_totalOrder_898 :: T_TotalOrder_764 -> T_TotalOrder_764
du_totalOrder_898 T_TotalOrder_764
v0
  = (T_IsTotalOrder_404 -> T_TotalOrder_764)
-> AgdaAny -> T_TotalOrder_764
forall a b. a -> b
coe
      T_IsTotalOrder_404 -> T_TotalOrder_764
MAlonzo.Code.Relation.Binary.Bundles.C_TotalOrder'46'constructor_15747
      ((T_IsTotalOrder_404 -> T_IsTotalOrder_404) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsTotalOrder_404 -> T_IsTotalOrder_404
du_isTotalOrder_398
         ((T_TotalOrder_764 -> T_IsTotalOrder_404) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_TotalOrder_764 -> T_IsTotalOrder_404
MAlonzo.Code.Relation.Binary.Bundles.d_isTotalOrder_786 (T_TotalOrder_764 -> AgdaAny
forall a b. a -> b
coe T_TotalOrder_764
v0)))
-- Relation.Binary.Construct.Flip.EqAndOrd.decTotalOrder
d_decTotalOrder_984 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_DecTotalOrder_866 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_DecTotalOrder_866
d_decTotalOrder_984 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> T_DecTotalOrder_866
-> T_DecTotalOrder_866
d_decTotalOrder_984 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 T_DecTotalOrder_866
v3 = T_DecTotalOrder_866 -> T_DecTotalOrder_866
du_decTotalOrder_984 T_DecTotalOrder_866
v3
du_decTotalOrder_984 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_DecTotalOrder_866 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_DecTotalOrder_866
du_decTotalOrder_984 :: T_DecTotalOrder_866 -> T_DecTotalOrder_866
du_decTotalOrder_984 T_DecTotalOrder_866
v0
  = (T_IsDecTotalOrder_460 -> T_DecTotalOrder_866)
-> AgdaAny -> T_DecTotalOrder_866
forall a b. a -> b
coe
      T_IsDecTotalOrder_460 -> T_DecTotalOrder_866
MAlonzo.Code.Relation.Binary.Bundles.C_DecTotalOrder'46'constructor_17849
      ((T_IsDecTotalOrder_460 -> T_IsDecTotalOrder_460)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsDecTotalOrder_460 -> T_IsDecTotalOrder_460
du_isDecTotalOrder_450
         ((T_DecTotalOrder_866 -> T_IsDecTotalOrder_460)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_DecTotalOrder_866 -> T_IsDecTotalOrder_460
MAlonzo.Code.Relation.Binary.Bundles.d_isDecTotalOrder_888
            (T_DecTotalOrder_866 -> AgdaAny
forall a b. a -> b
coe T_DecTotalOrder_866
v0)))
-- Relation.Binary.Construct.Flip.EqAndOrd.strictPartialOrder
d_strictPartialOrder_1088 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_StrictPartialOrder_556 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_StrictPartialOrder_556
d_strictPartialOrder_1088 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> T_StrictPartialOrder_556
-> T_StrictPartialOrder_556
d_strictPartialOrder_1088 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 T_StrictPartialOrder_556
v3
  = T_StrictPartialOrder_556 -> T_StrictPartialOrder_556
du_strictPartialOrder_1088 T_StrictPartialOrder_556
v3
du_strictPartialOrder_1088 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_StrictPartialOrder_556 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_StrictPartialOrder_556
du_strictPartialOrder_1088 :: T_StrictPartialOrder_556 -> T_StrictPartialOrder_556
du_strictPartialOrder_1088 T_StrictPartialOrder_556
v0
  = (T_IsStrictPartialOrder_290 -> T_StrictPartialOrder_556)
-> AgdaAny -> T_StrictPartialOrder_556
forall a b. a -> b
coe
      T_IsStrictPartialOrder_290 -> T_StrictPartialOrder_556
MAlonzo.Code.Relation.Binary.Bundles.C_StrictPartialOrder'46'constructor_11097
      ((T_IsStrictPartialOrder_290 -> T_IsStrictPartialOrder_290)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsStrictPartialOrder_290 -> T_IsStrictPartialOrder_290
du_isStrictPartialOrder_516
         ((T_StrictPartialOrder_556 -> T_IsStrictPartialOrder_290)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_StrictPartialOrder_556 -> T_IsStrictPartialOrder_290
MAlonzo.Code.Relation.Binary.Bundles.d_isStrictPartialOrder_578
            (T_StrictPartialOrder_556 -> AgdaAny
forall a b. a -> b
coe T_StrictPartialOrder_556
v0)))
-- Relation.Binary.Construct.Flip.EqAndOrd.strictTotalOrder
d_strictTotalOrder_1150 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_StrictTotalOrder_1036 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_StrictTotalOrder_1036
d_strictTotalOrder_1150 :: T_Level_18
-> T_Level_18
-> T_Level_18
-> T_StrictTotalOrder_1036
-> T_StrictTotalOrder_1036
d_strictTotalOrder_1150 ~T_Level_18
v0 ~T_Level_18
v1 ~T_Level_18
v2 T_StrictTotalOrder_1036
v3
  = T_StrictTotalOrder_1036 -> T_StrictTotalOrder_1036
du_strictTotalOrder_1150 T_StrictTotalOrder_1036
v3
du_strictTotalOrder_1150 ::
  MAlonzo.Code.Relation.Binary.Bundles.T_StrictTotalOrder_1036 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_StrictTotalOrder_1036
du_strictTotalOrder_1150 :: T_StrictTotalOrder_1036 -> T_StrictTotalOrder_1036
du_strictTotalOrder_1150 T_StrictTotalOrder_1036
v0
  = (T_IsStrictTotalOrder_534 -> T_StrictTotalOrder_1036)
-> AgdaAny -> T_StrictTotalOrder_1036
forall a b. a -> b
coe
      T_IsStrictTotalOrder_534 -> T_StrictTotalOrder_1036
MAlonzo.Code.Relation.Binary.Bundles.C_StrictTotalOrder'46'constructor_21059
      ((T_IsStrictTotalOrder_534 -> T_IsStrictTotalOrder_534)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsStrictTotalOrder_534 -> T_IsStrictTotalOrder_534
du_isStrictTotalOrder_554
         ((T_StrictTotalOrder_1036 -> T_IsStrictTotalOrder_534)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_StrictTotalOrder_1036 -> T_IsStrictTotalOrder_534
MAlonzo.Code.Relation.Binary.Bundles.d_isStrictTotalOrder_1058
            (T_StrictTotalOrder_1036 -> AgdaAny
forall a b. a -> b
coe T_StrictTotalOrder_1036
v0)))