{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE NoMonomorphismRestriction #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}

{-# OPTIONS_GHC -Wno-overlapping-patterns #-}

module MAlonzo.Code.Relation.Binary.Lattice.Bundles where

import MAlonzo.RTE (coe, erased, AgdaAny, addInt, subInt, mulInt,
                    quotInt, remInt, geqInt, ltInt, eqInt, add64, sub64, mul64, quot64,
                    rem64, lt64, eq64, word64FromNat, word64ToNat)
import qualified MAlonzo.RTE
import qualified Data.Text
import qualified MAlonzo.Code.Agda.Builtin.Equality
import qualified MAlonzo.Code.Agda.Builtin.Sigma
import qualified MAlonzo.Code.Agda.Primitive
import qualified MAlonzo.Code.Relation.Binary.Bundles
import qualified MAlonzo.Code.Relation.Binary.Lattice.Structures
import qualified MAlonzo.Code.Relation.Binary.Structures

-- Relation.Binary.Lattice.Bundles.JoinSemilattice
d_JoinSemilattice_14 :: p -> p -> p -> ()
d_JoinSemilattice_14 p
a0 p
a1 p
a2 = ()
data T_JoinSemilattice_14
  = C_JoinSemilattice'46'constructor_371 (AgdaAny ->
                                          AgdaAny -> AgdaAny)
                                         MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsJoinSemilattice_22
-- Relation.Binary.Lattice.Bundles.JoinSemilattice.Carrier
d_Carrier_32 :: T_JoinSemilattice_14 -> ()
d_Carrier_32 :: T_JoinSemilattice_14 -> ()
d_Carrier_32 = T_JoinSemilattice_14 -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._≈_
d__'8776'__34 :: T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> ()
d__'8776'__34 :: T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> ()
d__'8776'__34 = T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._≤_
d__'8804'__36 :: T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> ()
d__'8804'__36 :: T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> ()
d__'8804'__36 = T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._∨_
d__'8744'__38 ::
  T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__38 :: T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__38 T_JoinSemilattice_14
v0
  = case T_JoinSemilattice_14 -> T_JoinSemilattice_14
forall a b. a -> b
coe T_JoinSemilattice_14
v0 of
      C_JoinSemilattice'46'constructor_371 AgdaAny -> AgdaAny -> AgdaAny
v4 T_IsJoinSemilattice_22
v5 -> (AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny
v4
      T_JoinSemilattice_14
_ -> AgdaAny -> AgdaAny -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.JoinSemilattice.isJoinSemilattice
d_isJoinSemilattice_40 ::
  T_JoinSemilattice_14 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsJoinSemilattice_22
d_isJoinSemilattice_40 :: T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 T_JoinSemilattice_14
v0
  = case T_JoinSemilattice_14 -> T_JoinSemilattice_14
forall a b. a -> b
coe T_JoinSemilattice_14
v0 of
      C_JoinSemilattice'46'constructor_371 AgdaAny -> AgdaAny -> AgdaAny
v4 T_IsJoinSemilattice_22
v5 -> T_IsJoinSemilattice_22 -> T_IsJoinSemilattice_22
forall a b. a -> b
coe T_IsJoinSemilattice_22
v5
      T_JoinSemilattice_14
_ -> T_IsJoinSemilattice_22
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.antisym
d_antisym_44 ::
  T_JoinSemilattice_14 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_antisym_44 :: T_JoinSemilattice_14
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_antisym_44 T_JoinSemilattice_14
v0
  = (T_IsPartialOrder_174
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsPartialOrder_174
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_antisym_184
      ((T_IsJoinSemilattice_22 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
         ((T_JoinSemilattice_14 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14
v0)))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.isEquivalence
d_isEquivalence_46 ::
  T_JoinSemilattice_14 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsEquivalence_26
d_isEquivalence_46 :: T_JoinSemilattice_14 -> T_IsEquivalence_26
d_isEquivalence_46 T_JoinSemilattice_14
v0
  = (T_IsPreorder_70 -> T_IsEquivalence_26)
-> AgdaAny -> T_IsEquivalence_26
forall a b. a -> b
coe
      T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsJoinSemilattice_22 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
            ((T_JoinSemilattice_14 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14
v0))))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.isPartialOrder
d_isPartialOrder_48 ::
  T_JoinSemilattice_14 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialOrder_174
d_isPartialOrder_48 :: T_JoinSemilattice_14 -> T_IsPartialOrder_174
d_isPartialOrder_48 T_JoinSemilattice_14
v0
  = (T_IsJoinSemilattice_22 -> T_IsPartialOrder_174)
-> AgdaAny -> T_IsPartialOrder_174
forall a b. a -> b
coe
      T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
      ((T_JoinSemilattice_14 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14
v0))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.isPreorder
d_isPreorder_50 ::
  T_JoinSemilattice_14 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPreorder_70
d_isPreorder_50 :: T_JoinSemilattice_14 -> T_IsPreorder_70
d_isPreorder_50 T_JoinSemilattice_14
v0
  = (T_IsPartialOrder_174 -> T_IsPreorder_70)
-> AgdaAny -> T_IsPreorder_70
forall a b. a -> b
coe
      T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
      ((T_IsJoinSemilattice_22 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
         ((T_JoinSemilattice_14 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14
v0)))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.refl
d_refl_52 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_JoinSemilattice_14 -> AgdaAny -> AgdaAny
d_refl_52 :: () -> () -> () -> T_JoinSemilattice_14 -> AgdaAny -> AgdaAny
d_refl_52 ~()
v0 ~()
v1 ~()
v2 T_JoinSemilattice_14
v3 = T_JoinSemilattice_14 -> AgdaAny -> AgdaAny
du_refl_52 T_JoinSemilattice_14
v3
du_refl_52 :: T_JoinSemilattice_14 -> AgdaAny -> AgdaAny
du_refl_52 :: T_JoinSemilattice_14 -> AgdaAny -> AgdaAny
du_refl_52 T_JoinSemilattice_14
v0
  = let v1 :: T_IsJoinSemilattice_22
v1 = T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> T_JoinSemilattice_14
forall a b. a -> b
coe T_JoinSemilattice_14
v0) in
    AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
                 (T_IsJoinSemilattice_22 -> T_IsJoinSemilattice_22
forall a b. a -> b
coe T_IsJoinSemilattice_22
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70 -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_refl_98
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.reflexive
d_reflexive_54 ::
  T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_reflexive_54 :: T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_reflexive_54 T_JoinSemilattice_14
v0
  = (T_IsPreorder_70 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsPreorder_70 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_reflexive_82
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsJoinSemilattice_22 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
            ((T_JoinSemilattice_14 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14
v0))))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.supremum
d_supremum_56 ::
  T_JoinSemilattice_14 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_supremum_56 :: T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> T_Σ_14
d_supremum_56 T_JoinSemilattice_14
v0
  = (T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> T_Σ_14)
-> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_supremum_32
      ((T_JoinSemilattice_14 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14
v0))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.trans
d_trans_58 ::
  T_JoinSemilattice_14 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_58 :: T_JoinSemilattice_14
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_58 T_JoinSemilattice_14
v0
  = (T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_84
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsJoinSemilattice_22 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
            ((T_JoinSemilattice_14 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14
v0))))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.x≤x∨y
d_x'8804'x'8744'y_60 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8804'x'8744'y_60 :: ()
-> ()
-> ()
-> T_JoinSemilattice_14
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8804'x'8744'y_60 ~()
v0 ~()
v1 ~()
v2 T_JoinSemilattice_14
v3 = T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_60 T_JoinSemilattice_14
v3
du_x'8804'x'8744'y_60 ::
  T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_60 :: T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_60 T_JoinSemilattice_14
v0
  = (T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8804'x'8744'y_38
      ((T_JoinSemilattice_14 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14
v0))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.y≤x∨y
d_y'8804'x'8744'y_62 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> AgdaAny
d_y'8804'x'8744'y_62 :: ()
-> ()
-> ()
-> T_JoinSemilattice_14
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_y'8804'x'8744'y_62 ~()
v0 ~()
v1 ~()
v2 T_JoinSemilattice_14
v3 = T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_62 T_JoinSemilattice_14
v3
du_y'8804'x'8744'y_62 ::
  T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_62 :: T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_62 T_JoinSemilattice_14
v0
  = (T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_y'8804'x'8744'y_50
      ((T_JoinSemilattice_14 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14
v0))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.∨-least
d_'8744''45'least_64 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_JoinSemilattice_14 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8744''45'least_64 :: ()
-> ()
-> ()
-> T_JoinSemilattice_14
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8744''45'least_64 ~()
v0 ~()
v1 ~()
v2 T_JoinSemilattice_14
v3 = T_JoinSemilattice_14
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_64 T_JoinSemilattice_14
v3
du_'8744''45'least_64 ::
  T_JoinSemilattice_14 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_64 :: T_JoinSemilattice_14
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_64 T_JoinSemilattice_14
v0
  = (T_IsJoinSemilattice_22
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_IsJoinSemilattice_22
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_'8744''45'least_64
      ((T_JoinSemilattice_14 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14
v0))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.∼-resp-≈
d_'8764''45'resp'45''8776'_66 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_JoinSemilattice_14 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8764''45'resp'45''8776'_66 :: () -> () -> () -> T_JoinSemilattice_14 -> T_Σ_14
d_'8764''45'resp'45''8776'_66 ~()
v0 ~()
v1 ~()
v2 T_JoinSemilattice_14
v3
  = T_JoinSemilattice_14 -> T_Σ_14
du_'8764''45'resp'45''8776'_66 T_JoinSemilattice_14
v3
du_'8764''45'resp'45''8776'_66 ::
  T_JoinSemilattice_14 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8764''45'resp'45''8776'_66 :: T_JoinSemilattice_14 -> T_Σ_14
du_'8764''45'resp'45''8776'_66 T_JoinSemilattice_14
v0
  = let v1 :: T_IsJoinSemilattice_22
v1 = T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> T_JoinSemilattice_14
forall a b. a -> b
coe T_JoinSemilattice_14
v0) in
    AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
                 (T_IsJoinSemilattice_22 -> T_IsJoinSemilattice_22
forall a b. a -> b
coe T_IsJoinSemilattice_22
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70 -> T_Σ_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70 -> T_Σ_14
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'45''8776'_118
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.∼-respʳ-≈
d_'8764''45'resp'691''45''8776'_68 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_JoinSemilattice_14 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8764''45'resp'691''45''8776'_68 :: ()
-> ()
-> ()
-> T_JoinSemilattice_14
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8764''45'resp'691''45''8776'_68 ~()
v0 ~()
v1 ~()
v2 T_JoinSemilattice_14
v3
  = T_JoinSemilattice_14
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_68 T_JoinSemilattice_14
v3
du_'8764''45'resp'691''45''8776'_68 ::
  T_JoinSemilattice_14 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_68 :: T_JoinSemilattice_14
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_68 T_JoinSemilattice_14
v0
  = let v1 :: T_IsJoinSemilattice_22
v1 = T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> T_JoinSemilattice_14
forall a b. a -> b
coe T_JoinSemilattice_14
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
                 (T_IsJoinSemilattice_22 -> T_IsJoinSemilattice_22
forall a b. a -> b
coe T_IsJoinSemilattice_22
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'691''45''8776'_116
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.∼-respˡ-≈
d_'8764''45'resp'737''45''8776'_70 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_JoinSemilattice_14 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8764''45'resp'737''45''8776'_70 :: ()
-> ()
-> ()
-> T_JoinSemilattice_14
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8764''45'resp'737''45''8776'_70 ~()
v0 ~()
v1 ~()
v2 T_JoinSemilattice_14
v3
  = T_JoinSemilattice_14
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_70 T_JoinSemilattice_14
v3
du_'8764''45'resp'737''45''8776'_70 ::
  T_JoinSemilattice_14 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_70 :: T_JoinSemilattice_14
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_70 T_JoinSemilattice_14
v0
  = let v1 :: T_IsJoinSemilattice_22
v1 = T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> T_JoinSemilattice_14
forall a b. a -> b
coe T_JoinSemilattice_14
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
                 (T_IsJoinSemilattice_22 -> T_IsJoinSemilattice_22
forall a b. a -> b
coe T_IsJoinSemilattice_22
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'737''45''8776'_114
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.≲-resp-≈
d_'8818''45'resp'45''8776'_72 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_JoinSemilattice_14 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8818''45'resp'45''8776'_72 :: () -> () -> () -> T_JoinSemilattice_14 -> T_Σ_14
d_'8818''45'resp'45''8776'_72 ~()
v0 ~()
v1 ~()
v2 T_JoinSemilattice_14
v3
  = T_JoinSemilattice_14 -> T_Σ_14
du_'8818''45'resp'45''8776'_72 T_JoinSemilattice_14
v3
du_'8818''45'resp'45''8776'_72 ::
  T_JoinSemilattice_14 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8818''45'resp'45''8776'_72 :: T_JoinSemilattice_14 -> T_Σ_14
du_'8818''45'resp'45''8776'_72 T_JoinSemilattice_14
v0
  = let v1 :: T_IsJoinSemilattice_22
v1 = T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> T_JoinSemilattice_14
forall a b. a -> b
coe T_JoinSemilattice_14
v0) in
    AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
                 (T_IsJoinSemilattice_22 -> T_IsJoinSemilattice_22
forall a b. a -> b
coe T_IsJoinSemilattice_22
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70 -> T_Σ_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70 -> T_Σ_14
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'45''8776'_112
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.≲-respʳ-≈
d_'8818''45'resp'691''45''8776'_74 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_JoinSemilattice_14 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8818''45'resp'691''45''8776'_74 :: ()
-> ()
-> ()
-> T_JoinSemilattice_14
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8818''45'resp'691''45''8776'_74 ~()
v0 ~()
v1 ~()
v2 T_JoinSemilattice_14
v3
  = T_JoinSemilattice_14
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_74 T_JoinSemilattice_14
v3
du_'8818''45'resp'691''45''8776'_74 ::
  T_JoinSemilattice_14 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_74 :: T_JoinSemilattice_14
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_74 T_JoinSemilattice_14
v0
  = let v1 :: T_IsJoinSemilattice_22
v1 = T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> T_JoinSemilattice_14
forall a b. a -> b
coe T_JoinSemilattice_14
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
                 (T_IsJoinSemilattice_22 -> T_IsJoinSemilattice_22
forall a b. a -> b
coe T_IsJoinSemilattice_22
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'691''45''8776'_106
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.≲-respˡ-≈
d_'8818''45'resp'737''45''8776'_76 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_JoinSemilattice_14 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8818''45'resp'737''45''8776'_76 :: ()
-> ()
-> ()
-> T_JoinSemilattice_14
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8818''45'resp'737''45''8776'_76 ~()
v0 ~()
v1 ~()
v2 T_JoinSemilattice_14
v3
  = T_JoinSemilattice_14
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_76 T_JoinSemilattice_14
v3
du_'8818''45'resp'737''45''8776'_76 ::
  T_JoinSemilattice_14 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_76 :: T_JoinSemilattice_14
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_76 T_JoinSemilattice_14
v0
  = let v1 :: T_IsJoinSemilattice_22
v1 = T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> T_JoinSemilattice_14
forall a b. a -> b
coe T_JoinSemilattice_14
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
                 (T_IsJoinSemilattice_22 -> T_IsJoinSemilattice_22
forall a b. a -> b
coe T_IsJoinSemilattice_22
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'737''45''8776'_100
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.Eq.isPartialEquivalence
d_isPartialEquivalence_80 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_JoinSemilattice_14 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialEquivalence_16
d_isPartialEquivalence_80 :: () -> () -> () -> T_JoinSemilattice_14 -> T_IsPartialEquivalence_16
d_isPartialEquivalence_80 ~()
v0 ~()
v1 ~()
v2 T_JoinSemilattice_14
v3
  = T_JoinSemilattice_14 -> T_IsPartialEquivalence_16
du_isPartialEquivalence_80 T_JoinSemilattice_14
v3
du_isPartialEquivalence_80 ::
  T_JoinSemilattice_14 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialEquivalence_16
du_isPartialEquivalence_80 :: T_JoinSemilattice_14 -> T_IsPartialEquivalence_16
du_isPartialEquivalence_80 T_JoinSemilattice_14
v0
  = let v1 :: T_IsJoinSemilattice_22
v1 = T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> T_JoinSemilattice_14
forall a b. a -> b
coe T_JoinSemilattice_14
v0) in
    AgdaAny -> T_IsPartialEquivalence_16
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
                 (T_IsJoinSemilattice_22 -> T_IsJoinSemilattice_22
forall a b. a -> b
coe T_IsJoinSemilattice_22
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPreorder_70
v3
                = T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                    (T_IsPartialOrder_174 -> T_IsPartialOrder_174
forall a b. a -> b
coe T_IsPartialOrder_174
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsEquivalence_26 -> T_IsPartialEquivalence_16)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsEquivalence_26 -> T_IsPartialEquivalence_16
MAlonzo.Code.Relation.Binary.Structures.du_isPartialEquivalence_42
               ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                  (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v3)))))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.Eq.refl
d_refl_82 :: T_JoinSemilattice_14 -> AgdaAny -> AgdaAny
d_refl_82 :: T_JoinSemilattice_14 -> AgdaAny -> AgdaAny
d_refl_82 T_JoinSemilattice_14
v0
  = (T_IsEquivalence_26 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsJoinSemilattice_22 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
               ((T_JoinSemilattice_14 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14
v0)))))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.Eq.reflexive
d_reflexive_84 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_JoinSemilattice_14 ->
  AgdaAny ->
  AgdaAny ->
  MAlonzo.Code.Agda.Builtin.Equality.T__'8801'__12 -> AgdaAny
d_reflexive_84 :: ()
-> ()
-> ()
-> T_JoinSemilattice_14
-> AgdaAny
-> AgdaAny
-> T__'8801'__12
-> AgdaAny
d_reflexive_84 ~()
v0 ~()
v1 ~()
v2 T_JoinSemilattice_14
v3 = T_JoinSemilattice_14
-> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
du_reflexive_84 T_JoinSemilattice_14
v3
du_reflexive_84 ::
  T_JoinSemilattice_14 ->
  AgdaAny ->
  AgdaAny ->
  MAlonzo.Code.Agda.Builtin.Equality.T__'8801'__12 -> AgdaAny
du_reflexive_84 :: T_JoinSemilattice_14
-> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
du_reflexive_84 T_JoinSemilattice_14
v0
  = let v1 :: T_IsJoinSemilattice_22
v1 = T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> T_JoinSemilattice_14
forall a b. a -> b
coe T_JoinSemilattice_14
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
                 (T_IsJoinSemilattice_22 -> T_IsJoinSemilattice_22
forall a b. a -> b
coe T_IsJoinSemilattice_22
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPreorder_70
v3
                = T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                    (T_IsPartialOrder_174 -> T_IsPartialOrder_174
forall a b. a -> b
coe T_IsPartialOrder_174
v2) in
          (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny
forall a b. a -> b
coe
            (\ AgdaAny
v4 AgdaAny
v5 AgdaAny
v6 ->
               (T_IsEquivalence_26 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                 T_IsEquivalence_26 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_reflexive_40
                 ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                    T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                    (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v3))
                 AgdaAny
v4)))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.Eq.sym
d_sym_86 ::
  T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_sym_86 :: T_JoinSemilattice_14 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_sym_86 T_JoinSemilattice_14
v0
  = (T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsJoinSemilattice_22 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
               ((T_JoinSemilattice_14 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14
v0)))))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.Eq.trans
d_trans_88 ::
  T_JoinSemilattice_14 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_88 :: T_JoinSemilattice_14
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_88 T_JoinSemilattice_14
v0
  = (T_IsEquivalence_26
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_38
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsJoinSemilattice_22 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
               ((T_JoinSemilattice_14 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14
v0)))))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice.poset
d_poset_90 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_JoinSemilattice_14 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314
d_poset_90 :: () -> () -> () -> T_JoinSemilattice_14 -> T_Poset_314
d_poset_90 ~()
v0 ~()
v1 ~()
v2 T_JoinSemilattice_14
v3 = T_JoinSemilattice_14 -> T_Poset_314
du_poset_90 T_JoinSemilattice_14
v3
du_poset_90 ::
  T_JoinSemilattice_14 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314
du_poset_90 :: T_JoinSemilattice_14 -> T_Poset_314
du_poset_90 T_JoinSemilattice_14
v0
  = (T_IsPartialOrder_174 -> T_Poset_314)
-> T_IsPartialOrder_174 -> T_Poset_314
forall a b. a -> b
coe
      T_IsPartialOrder_174 -> T_Poset_314
MAlonzo.Code.Relation.Binary.Bundles.C_Poset'46'constructor_6389
      (T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
         ((T_JoinSemilattice_14 -> T_IsJoinSemilattice_22)
-> AgdaAny -> T_IsJoinSemilattice_22
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_40 (T_JoinSemilattice_14 -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14
v0)))
-- Relation.Binary.Lattice.Bundles.JoinSemilattice._.preorder
d_preorder_94 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_JoinSemilattice_14 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132
d_preorder_94 :: () -> () -> () -> T_JoinSemilattice_14 -> T_Preorder_132
d_preorder_94 ~()
v0 ~()
v1 ~()
v2 T_JoinSemilattice_14
v3 = T_JoinSemilattice_14 -> T_Preorder_132
du_preorder_94 T_JoinSemilattice_14
v3
du_preorder_94 ::
  T_JoinSemilattice_14 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132
du_preorder_94 :: T_JoinSemilattice_14 -> T_Preorder_132
du_preorder_94 T_JoinSemilattice_14
v0
  = (T_Poset_314 -> T_Preorder_132) -> AgdaAny -> T_Preorder_132
forall a b. a -> b
coe
      T_Poset_314 -> T_Preorder_132
MAlonzo.Code.Relation.Binary.Bundles.du_preorder_344
      ((T_JoinSemilattice_14 -> T_Poset_314) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_Poset_314
du_poset_90 (T_JoinSemilattice_14 -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14
v0))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice
d_BoundedJoinSemilattice_102 :: p -> p -> p -> ()
d_BoundedJoinSemilattice_102 p
a0 p
a1 p
a2 = ()
data T_BoundedJoinSemilattice_102
  = C_BoundedJoinSemilattice'46'constructor_2401 (AgdaAny ->
                                                  AgdaAny -> AgdaAny)
                                                 AgdaAny
                                                 MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedJoinSemilattice_116
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice.Carrier
d_Carrier_122 :: T_BoundedJoinSemilattice_102 -> ()
d_Carrier_122 :: T_BoundedJoinSemilattice_102 -> ()
d_Carrier_122 = T_BoundedJoinSemilattice_102 -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._≈_
d__'8776'__124 ::
  T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny -> ()
d__'8776'__124 :: T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny -> ()
d__'8776'__124 = T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._≤_
d__'8804'__126 ::
  T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny -> ()
d__'8804'__126 :: T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny -> ()
d__'8804'__126 = T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._∨_
d__'8744'__128 ::
  T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__128 :: T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__128 T_BoundedJoinSemilattice_102
v0
  = case T_BoundedJoinSemilattice_102 -> T_BoundedJoinSemilattice_102
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0 of
      C_BoundedJoinSemilattice'46'constructor_2401 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny
v5 T_IsBoundedJoinSemilattice_116
v6 -> (AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny
v4
      T_BoundedJoinSemilattice_102
_ -> AgdaAny -> AgdaAny -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice.⊥
d_'8869'_130 :: T_BoundedJoinSemilattice_102 -> AgdaAny
d_'8869'_130 :: T_BoundedJoinSemilattice_102 -> AgdaAny
d_'8869'_130 T_BoundedJoinSemilattice_102
v0
  = case T_BoundedJoinSemilattice_102 -> T_BoundedJoinSemilattice_102
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0 of
      C_BoundedJoinSemilattice'46'constructor_2401 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny
v5 T_IsBoundedJoinSemilattice_116
v6 -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v5
      T_BoundedJoinSemilattice_102
_ -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice.isBoundedJoinSemilattice
d_isBoundedJoinSemilattice_132 ::
  T_BoundedJoinSemilattice_102 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 :: T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 T_BoundedJoinSemilattice_102
v0
  = case T_BoundedJoinSemilattice_102 -> T_BoundedJoinSemilattice_102
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0 of
      C_BoundedJoinSemilattice'46'constructor_2401 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny
v5 T_IsBoundedJoinSemilattice_116
v6 -> T_IsBoundedJoinSemilattice_116 -> T_IsBoundedJoinSemilattice_116
forall a b. a -> b
coe T_IsBoundedJoinSemilattice_116
v6
      T_BoundedJoinSemilattice_102
_ -> T_IsBoundedJoinSemilattice_116
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.antisym
d_antisym_136 ::
  T_BoundedJoinSemilattice_102 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_antisym_136 :: T_BoundedJoinSemilattice_102
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_antisym_136 T_BoundedJoinSemilattice_102
v0
  = (T_IsPartialOrder_174
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsPartialOrder_174
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_antisym_184
      ((T_IsJoinSemilattice_22 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
         ((T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
            ((T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0))))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.isEquivalence
d_isEquivalence_138 ::
  T_BoundedJoinSemilattice_102 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsEquivalence_26
d_isEquivalence_138 :: T_BoundedJoinSemilattice_102 -> T_IsEquivalence_26
d_isEquivalence_138 T_BoundedJoinSemilattice_102
v0
  = (T_IsPreorder_70 -> T_IsEquivalence_26)
-> AgdaAny -> T_IsEquivalence_26
forall a b. a -> b
coe
      T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsJoinSemilattice_22 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
            ((T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
               ((T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0)))))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.isJoinSemilattice
d_isJoinSemilattice_140 ::
  T_BoundedJoinSemilattice_102 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsJoinSemilattice_22
d_isJoinSemilattice_140 :: T_BoundedJoinSemilattice_102 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_140 T_BoundedJoinSemilattice_102
v0
  = (T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22)
-> AgdaAny -> T_IsJoinSemilattice_22
forall a b. a -> b
coe
      T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
      ((T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.isPartialOrder
d_isPartialOrder_142 ::
  T_BoundedJoinSemilattice_102 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialOrder_174
d_isPartialOrder_142 :: T_BoundedJoinSemilattice_102 -> T_IsPartialOrder_174
d_isPartialOrder_142 T_BoundedJoinSemilattice_102
v0
  = (T_IsJoinSemilattice_22 -> T_IsPartialOrder_174)
-> AgdaAny -> T_IsPartialOrder_174
forall a b. a -> b
coe
      T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
      ((T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
         ((T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0)))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.isPreorder
d_isPreorder_144 ::
  T_BoundedJoinSemilattice_102 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPreorder_70
d_isPreorder_144 :: T_BoundedJoinSemilattice_102 -> T_IsPreorder_70
d_isPreorder_144 T_BoundedJoinSemilattice_102
v0
  = (T_IsPartialOrder_174 -> T_IsPreorder_70)
-> AgdaAny -> T_IsPreorder_70
forall a b. a -> b
coe
      T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
      ((T_IsJoinSemilattice_22 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
         ((T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
            ((T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0))))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.minimum
d_minimum_146 :: T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny
d_minimum_146 :: T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny
d_minimum_146 T_BoundedJoinSemilattice_102
v0
  = (T_IsBoundedJoinSemilattice_116 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsBoundedJoinSemilattice_116 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_minimum_128
      ((T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.refl
d_refl_148 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny
d_refl_148 :: ()
-> () -> () -> T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny
d_refl_148 ~()
v0 ~()
v1 ~()
v2 T_BoundedJoinSemilattice_102
v3 = T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny
du_refl_148 T_BoundedJoinSemilattice_102
v3
du_refl_148 :: T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny
du_refl_148 :: T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny
du_refl_148 T_BoundedJoinSemilattice_102
v0
  = let v1 :: T_IsBoundedJoinSemilattice_116
v1 = T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> T_BoundedJoinSemilattice_102
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0) in
    AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsJoinSemilattice_22
v2
             = T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
                 (T_IsBoundedJoinSemilattice_116 -> T_IsBoundedJoinSemilattice_116
forall a b. a -> b
coe T_IsBoundedJoinSemilattice_116
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
                    (T_IsJoinSemilattice_22 -> T_IsJoinSemilattice_22
forall a b. a -> b
coe T_IsJoinSemilattice_22
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70 -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_refl_98
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.reflexive
d_reflexive_150 ::
  T_BoundedJoinSemilattice_102 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_reflexive_150 :: T_BoundedJoinSemilattice_102
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_reflexive_150 T_BoundedJoinSemilattice_102
v0
  = (T_IsPreorder_70 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsPreorder_70 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_reflexive_82
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsJoinSemilattice_22 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
            ((T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
               ((T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0)))))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.supremum
d_supremum_152 ::
  T_BoundedJoinSemilattice_102 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_supremum_152 :: T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny -> T_Σ_14
d_supremum_152 T_BoundedJoinSemilattice_102
v0
  = (T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> T_Σ_14)
-> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_supremum_32
      ((T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
         ((T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0)))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.trans
d_trans_154 ::
  T_BoundedJoinSemilattice_102 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_154 :: T_BoundedJoinSemilattice_102
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_154 T_BoundedJoinSemilattice_102
v0
  = (T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_84
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsJoinSemilattice_22 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
            ((T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
               ((T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0)))))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.x≤x∨y
d_x'8804'x'8744'y_156 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8804'x'8744'y_156 :: ()
-> ()
-> ()
-> T_BoundedJoinSemilattice_102
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8804'x'8744'y_156 ~()
v0 ~()
v1 ~()
v2 T_BoundedJoinSemilattice_102
v3 = T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_156 T_BoundedJoinSemilattice_102
v3
du_x'8804'x'8744'y_156 ::
  T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_156 :: T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_156 T_BoundedJoinSemilattice_102
v0
  = let v1 :: T_IsBoundedJoinSemilattice_116
v1 = T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> T_BoundedJoinSemilattice_102
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8804'x'8744'y_38
         ((T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
            (T_IsBoundedJoinSemilattice_116 -> AgdaAny
forall a b. a -> b
coe T_IsBoundedJoinSemilattice_116
v1)))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.y≤x∨y
d_y'8804'x'8744'y_158 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny -> AgdaAny
d_y'8804'x'8744'y_158 :: ()
-> ()
-> ()
-> T_BoundedJoinSemilattice_102
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_y'8804'x'8744'y_158 ~()
v0 ~()
v1 ~()
v2 T_BoundedJoinSemilattice_102
v3 = T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_158 T_BoundedJoinSemilattice_102
v3
du_y'8804'x'8744'y_158 ::
  T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_158 :: T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_158 T_BoundedJoinSemilattice_102
v0
  = let v1 :: T_IsBoundedJoinSemilattice_116
v1 = T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> T_BoundedJoinSemilattice_102
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_y'8804'x'8744'y_50
         ((T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
            (T_IsBoundedJoinSemilattice_116 -> AgdaAny
forall a b. a -> b
coe T_IsBoundedJoinSemilattice_116
v1)))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.∨-least
d_'8744''45'least_160 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedJoinSemilattice_102 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8744''45'least_160 :: ()
-> ()
-> ()
-> T_BoundedJoinSemilattice_102
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8744''45'least_160 ~()
v0 ~()
v1 ~()
v2 T_BoundedJoinSemilattice_102
v3 = T_BoundedJoinSemilattice_102
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_160 T_BoundedJoinSemilattice_102
v3
du_'8744''45'least_160 ::
  T_BoundedJoinSemilattice_102 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_160 :: T_BoundedJoinSemilattice_102
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_160 T_BoundedJoinSemilattice_102
v0
  = let v1 :: T_IsBoundedJoinSemilattice_116
v1 = T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> T_BoundedJoinSemilattice_102
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsJoinSemilattice_22
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsJoinSemilattice_22
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_'8744''45'least_64
         ((T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
            (T_IsBoundedJoinSemilattice_116 -> AgdaAny
forall a b. a -> b
coe T_IsBoundedJoinSemilattice_116
v1)))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.∼-resp-≈
d_'8764''45'resp'45''8776'_162 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedJoinSemilattice_102 ->
  MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8764''45'resp'45''8776'_162 :: () -> () -> () -> T_BoundedJoinSemilattice_102 -> T_Σ_14
d_'8764''45'resp'45''8776'_162 ~()
v0 ~()
v1 ~()
v2 T_BoundedJoinSemilattice_102
v3
  = T_BoundedJoinSemilattice_102 -> T_Σ_14
du_'8764''45'resp'45''8776'_162 T_BoundedJoinSemilattice_102
v3
du_'8764''45'resp'45''8776'_162 ::
  T_BoundedJoinSemilattice_102 ->
  MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8764''45'resp'45''8776'_162 :: T_BoundedJoinSemilattice_102 -> T_Σ_14
du_'8764''45'resp'45''8776'_162 T_BoundedJoinSemilattice_102
v0
  = let v1 :: T_IsBoundedJoinSemilattice_116
v1 = T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> T_BoundedJoinSemilattice_102
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0) in
    AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      (let v2 :: T_IsJoinSemilattice_22
v2
             = T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
                 (T_IsBoundedJoinSemilattice_116 -> T_IsBoundedJoinSemilattice_116
forall a b. a -> b
coe T_IsBoundedJoinSemilattice_116
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
                    (T_IsJoinSemilattice_22 -> T_IsJoinSemilattice_22
forall a b. a -> b
coe T_IsJoinSemilattice_22
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70 -> T_Σ_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70 -> T_Σ_14
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'45''8776'_118
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.∼-respʳ-≈
d_'8764''45'resp'691''45''8776'_164 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedJoinSemilattice_102 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8764''45'resp'691''45''8776'_164 :: ()
-> ()
-> ()
-> T_BoundedJoinSemilattice_102
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8764''45'resp'691''45''8776'_164 ~()
v0 ~()
v1 ~()
v2 T_BoundedJoinSemilattice_102
v3
  = T_BoundedJoinSemilattice_102
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_164 T_BoundedJoinSemilattice_102
v3
du_'8764''45'resp'691''45''8776'_164 ::
  T_BoundedJoinSemilattice_102 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_164 :: T_BoundedJoinSemilattice_102
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_164 T_BoundedJoinSemilattice_102
v0
  = let v1 :: T_IsBoundedJoinSemilattice_116
v1 = T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> T_BoundedJoinSemilattice_102
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsJoinSemilattice_22
v2
             = T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
                 (T_IsBoundedJoinSemilattice_116 -> T_IsBoundedJoinSemilattice_116
forall a b. a -> b
coe T_IsBoundedJoinSemilattice_116
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
                    (T_IsJoinSemilattice_22 -> T_IsJoinSemilattice_22
forall a b. a -> b
coe T_IsJoinSemilattice_22
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'691''45''8776'_116
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.∼-respˡ-≈
d_'8764''45'resp'737''45''8776'_166 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedJoinSemilattice_102 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8764''45'resp'737''45''8776'_166 :: ()
-> ()
-> ()
-> T_BoundedJoinSemilattice_102
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8764''45'resp'737''45''8776'_166 ~()
v0 ~()
v1 ~()
v2 T_BoundedJoinSemilattice_102
v3
  = T_BoundedJoinSemilattice_102
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_166 T_BoundedJoinSemilattice_102
v3
du_'8764''45'resp'737''45''8776'_166 ::
  T_BoundedJoinSemilattice_102 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_166 :: T_BoundedJoinSemilattice_102
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_166 T_BoundedJoinSemilattice_102
v0
  = let v1 :: T_IsBoundedJoinSemilattice_116
v1 = T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> T_BoundedJoinSemilattice_102
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsJoinSemilattice_22
v2
             = T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
                 (T_IsBoundedJoinSemilattice_116 -> T_IsBoundedJoinSemilattice_116
forall a b. a -> b
coe T_IsBoundedJoinSemilattice_116
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
                    (T_IsJoinSemilattice_22 -> T_IsJoinSemilattice_22
forall a b. a -> b
coe T_IsJoinSemilattice_22
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'737''45''8776'_114
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.≲-resp-≈
d_'8818''45'resp'45''8776'_168 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedJoinSemilattice_102 ->
  MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8818''45'resp'45''8776'_168 :: () -> () -> () -> T_BoundedJoinSemilattice_102 -> T_Σ_14
d_'8818''45'resp'45''8776'_168 ~()
v0 ~()
v1 ~()
v2 T_BoundedJoinSemilattice_102
v3
  = T_BoundedJoinSemilattice_102 -> T_Σ_14
du_'8818''45'resp'45''8776'_168 T_BoundedJoinSemilattice_102
v3
du_'8818''45'resp'45''8776'_168 ::
  T_BoundedJoinSemilattice_102 ->
  MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8818''45'resp'45''8776'_168 :: T_BoundedJoinSemilattice_102 -> T_Σ_14
du_'8818''45'resp'45''8776'_168 T_BoundedJoinSemilattice_102
v0
  = let v1 :: T_IsBoundedJoinSemilattice_116
v1 = T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> T_BoundedJoinSemilattice_102
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0) in
    AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      (let v2 :: T_IsJoinSemilattice_22
v2
             = T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
                 (T_IsBoundedJoinSemilattice_116 -> T_IsBoundedJoinSemilattice_116
forall a b. a -> b
coe T_IsBoundedJoinSemilattice_116
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
                    (T_IsJoinSemilattice_22 -> T_IsJoinSemilattice_22
forall a b. a -> b
coe T_IsJoinSemilattice_22
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70 -> T_Σ_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70 -> T_Σ_14
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'45''8776'_112
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.≲-respʳ-≈
d_'8818''45'resp'691''45''8776'_170 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedJoinSemilattice_102 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8818''45'resp'691''45''8776'_170 :: ()
-> ()
-> ()
-> T_BoundedJoinSemilattice_102
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8818''45'resp'691''45''8776'_170 ~()
v0 ~()
v1 ~()
v2 T_BoundedJoinSemilattice_102
v3
  = T_BoundedJoinSemilattice_102
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_170 T_BoundedJoinSemilattice_102
v3
du_'8818''45'resp'691''45''8776'_170 ::
  T_BoundedJoinSemilattice_102 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_170 :: T_BoundedJoinSemilattice_102
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_170 T_BoundedJoinSemilattice_102
v0
  = let v1 :: T_IsBoundedJoinSemilattice_116
v1 = T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> T_BoundedJoinSemilattice_102
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsJoinSemilattice_22
v2
             = T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
                 (T_IsBoundedJoinSemilattice_116 -> T_IsBoundedJoinSemilattice_116
forall a b. a -> b
coe T_IsBoundedJoinSemilattice_116
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
                    (T_IsJoinSemilattice_22 -> T_IsJoinSemilattice_22
forall a b. a -> b
coe T_IsJoinSemilattice_22
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'691''45''8776'_106
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.≲-respˡ-≈
d_'8818''45'resp'737''45''8776'_172 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedJoinSemilattice_102 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8818''45'resp'737''45''8776'_172 :: ()
-> ()
-> ()
-> T_BoundedJoinSemilattice_102
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8818''45'resp'737''45''8776'_172 ~()
v0 ~()
v1 ~()
v2 T_BoundedJoinSemilattice_102
v3
  = T_BoundedJoinSemilattice_102
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_172 T_BoundedJoinSemilattice_102
v3
du_'8818''45'resp'737''45''8776'_172 ::
  T_BoundedJoinSemilattice_102 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_172 :: T_BoundedJoinSemilattice_102
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_172 T_BoundedJoinSemilattice_102
v0
  = let v1 :: T_IsBoundedJoinSemilattice_116
v1 = T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> T_BoundedJoinSemilattice_102
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsJoinSemilattice_22
v2
             = T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
                 (T_IsBoundedJoinSemilattice_116 -> T_IsBoundedJoinSemilattice_116
forall a b. a -> b
coe T_IsBoundedJoinSemilattice_116
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
                    (T_IsJoinSemilattice_22 -> T_IsJoinSemilattice_22
forall a b. a -> b
coe T_IsJoinSemilattice_22
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'737''45''8776'_100
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.Eq.isPartialEquivalence
d_isPartialEquivalence_176 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedJoinSemilattice_102 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialEquivalence_16
d_isPartialEquivalence_176 :: ()
-> ()
-> ()
-> T_BoundedJoinSemilattice_102
-> T_IsPartialEquivalence_16
d_isPartialEquivalence_176 ~()
v0 ~()
v1 ~()
v2 T_BoundedJoinSemilattice_102
v3
  = T_BoundedJoinSemilattice_102 -> T_IsPartialEquivalence_16
du_isPartialEquivalence_176 T_BoundedJoinSemilattice_102
v3
du_isPartialEquivalence_176 ::
  T_BoundedJoinSemilattice_102 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialEquivalence_16
du_isPartialEquivalence_176 :: T_BoundedJoinSemilattice_102 -> T_IsPartialEquivalence_16
du_isPartialEquivalence_176 T_BoundedJoinSemilattice_102
v0
  = let v1 :: T_IsBoundedJoinSemilattice_116
v1 = T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> T_BoundedJoinSemilattice_102
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0) in
    AgdaAny -> T_IsPartialEquivalence_16
forall a b. a -> b
coe
      (let v2 :: T_IsJoinSemilattice_22
v2
             = T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
                 (T_IsBoundedJoinSemilattice_116 -> T_IsBoundedJoinSemilattice_116
forall a b. a -> b
coe T_IsBoundedJoinSemilattice_116
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
                    (T_IsJoinSemilattice_22 -> T_IsJoinSemilattice_22
forall a b. a -> b
coe T_IsJoinSemilattice_22
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsPreorder_70
v4
                   = T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                       (T_IsPartialOrder_174 -> T_IsPartialOrder_174
forall a b. a -> b
coe T_IsPartialOrder_174
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               ((T_IsEquivalence_26 -> T_IsPartialEquivalence_16)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsEquivalence_26 -> T_IsPartialEquivalence_16
MAlonzo.Code.Relation.Binary.Structures.du_isPartialEquivalence_42
                  ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                     (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v4))))))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.Eq.refl
d_refl_178 :: T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny
d_refl_178 :: T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny
d_refl_178 T_BoundedJoinSemilattice_102
v0
  = (T_IsEquivalence_26 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsJoinSemilattice_22 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
               ((T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
                  ((T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0))))))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.Eq.reflexive
d_reflexive_180 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedJoinSemilattice_102 ->
  AgdaAny ->
  AgdaAny ->
  MAlonzo.Code.Agda.Builtin.Equality.T__'8801'__12 -> AgdaAny
d_reflexive_180 :: ()
-> ()
-> ()
-> T_BoundedJoinSemilattice_102
-> AgdaAny
-> AgdaAny
-> T__'8801'__12
-> AgdaAny
d_reflexive_180 ~()
v0 ~()
v1 ~()
v2 T_BoundedJoinSemilattice_102
v3 = T_BoundedJoinSemilattice_102
-> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
du_reflexive_180 T_BoundedJoinSemilattice_102
v3
du_reflexive_180 ::
  T_BoundedJoinSemilattice_102 ->
  AgdaAny ->
  AgdaAny ->
  MAlonzo.Code.Agda.Builtin.Equality.T__'8801'__12 -> AgdaAny
du_reflexive_180 :: T_BoundedJoinSemilattice_102
-> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
du_reflexive_180 T_BoundedJoinSemilattice_102
v0
  = let v1 :: T_IsBoundedJoinSemilattice_116
v1 = T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> T_BoundedJoinSemilattice_102
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsJoinSemilattice_22
v2
             = T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
                 (T_IsBoundedJoinSemilattice_116 -> T_IsBoundedJoinSemilattice_116
forall a b. a -> b
coe T_IsBoundedJoinSemilattice_116
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
                    (T_IsJoinSemilattice_22 -> T_IsJoinSemilattice_22
forall a b. a -> b
coe T_IsJoinSemilattice_22
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsPreorder_70
v4
                   = T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                       (T_IsPartialOrder_174 -> T_IsPartialOrder_174
forall a b. a -> b
coe T_IsPartialOrder_174
v3) in
             (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny
forall a b. a -> b
coe
               (\ AgdaAny
v5 AgdaAny
v6 AgdaAny
v7 ->
                  (T_IsEquivalence_26 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                    T_IsEquivalence_26 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_reflexive_40
                    ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                       T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                       (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v4))
                    AgdaAny
v5))))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.Eq.sym
d_sym_182 ::
  T_BoundedJoinSemilattice_102 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_sym_182 :: T_BoundedJoinSemilattice_102
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_sym_182 T_BoundedJoinSemilattice_102
v0
  = (T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsJoinSemilattice_22 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
               ((T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
                  ((T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0))))))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.Eq.trans
d_trans_184 ::
  T_BoundedJoinSemilattice_102 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_184 :: T_BoundedJoinSemilattice_102
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_184 T_BoundedJoinSemilattice_102
v0
  = (T_IsEquivalence_26
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_38
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsJoinSemilattice_22 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsJoinSemilattice_22 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_30
               ((T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
                  ((T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0))))))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice.joinSemilattice
d_joinSemilattice_186 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedJoinSemilattice_102 -> T_JoinSemilattice_14
d_joinSemilattice_186 :: ()
-> () -> () -> T_BoundedJoinSemilattice_102 -> T_JoinSemilattice_14
d_joinSemilattice_186 ~()
v0 ~()
v1 ~()
v2 T_BoundedJoinSemilattice_102
v3 = T_BoundedJoinSemilattice_102 -> T_JoinSemilattice_14
du_joinSemilattice_186 T_BoundedJoinSemilattice_102
v3
du_joinSemilattice_186 ::
  T_BoundedJoinSemilattice_102 -> T_JoinSemilattice_14
du_joinSemilattice_186 :: T_BoundedJoinSemilattice_102 -> T_JoinSemilattice_14
du_joinSemilattice_186 T_BoundedJoinSemilattice_102
v0
  = ((AgdaAny -> AgdaAny -> AgdaAny)
 -> T_IsJoinSemilattice_22 -> T_JoinSemilattice_14)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> T_IsJoinSemilattice_22
-> T_JoinSemilattice_14
forall a b. a -> b
coe
      (AgdaAny -> AgdaAny -> AgdaAny)
-> T_IsJoinSemilattice_22 -> T_JoinSemilattice_14
C_JoinSemilattice'46'constructor_371 (T_BoundedJoinSemilattice_102 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__128 (T_BoundedJoinSemilattice_102 -> T_BoundedJoinSemilattice_102
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0))
      (T_IsBoundedJoinSemilattice_116 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isJoinSemilattice_126
         ((T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116)
-> AgdaAny -> T_IsBoundedJoinSemilattice_116
forall a b. a -> b
coe T_BoundedJoinSemilattice_102 -> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_132 (T_BoundedJoinSemilattice_102 -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0)))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.poset
d_poset_190 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedJoinSemilattice_102 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314
d_poset_190 :: () -> () -> () -> T_BoundedJoinSemilattice_102 -> T_Poset_314
d_poset_190 ~()
v0 ~()
v1 ~()
v2 T_BoundedJoinSemilattice_102
v3 = T_BoundedJoinSemilattice_102 -> T_Poset_314
du_poset_190 T_BoundedJoinSemilattice_102
v3
du_poset_190 ::
  T_BoundedJoinSemilattice_102 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314
du_poset_190 :: T_BoundedJoinSemilattice_102 -> T_Poset_314
du_poset_190 T_BoundedJoinSemilattice_102
v0
  = (T_JoinSemilattice_14 -> T_Poset_314) -> AgdaAny -> T_Poset_314
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_Poset_314
du_poset_90 ((T_BoundedJoinSemilattice_102 -> T_JoinSemilattice_14)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102 -> T_JoinSemilattice_14
du_joinSemilattice_186 (T_BoundedJoinSemilattice_102 -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0))
-- Relation.Binary.Lattice.Bundles.BoundedJoinSemilattice._.preorder
d_preorder_192 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedJoinSemilattice_102 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132
d_preorder_192 :: () -> () -> () -> T_BoundedJoinSemilattice_102 -> T_Preorder_132
d_preorder_192 ~()
v0 ~()
v1 ~()
v2 T_BoundedJoinSemilattice_102
v3 = T_BoundedJoinSemilattice_102 -> T_Preorder_132
du_preorder_192 T_BoundedJoinSemilattice_102
v3
du_preorder_192 ::
  T_BoundedJoinSemilattice_102 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132
du_preorder_192 :: T_BoundedJoinSemilattice_102 -> T_Preorder_132
du_preorder_192 T_BoundedJoinSemilattice_102
v0
  = let v1 :: t
v1 = (T_BoundedJoinSemilattice_102 -> T_JoinSemilattice_14)
-> AgdaAny -> t
forall a b. a -> b
coe T_BoundedJoinSemilattice_102 -> T_JoinSemilattice_14
du_joinSemilattice_186 (T_BoundedJoinSemilattice_102 -> AgdaAny
forall a b. a -> b
coe T_BoundedJoinSemilattice_102
v0) in
    AgdaAny -> T_Preorder_132
forall a b. a -> b
coe
      ((T_Poset_314 -> T_Preorder_132) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_Poset_314 -> T_Preorder_132
MAlonzo.Code.Relation.Binary.Bundles.du_preorder_344
         ((T_JoinSemilattice_14 -> T_Poset_314) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_Poset_314
du_poset_90 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice
d_MeetSemilattice_200 :: p -> p -> p -> ()
d_MeetSemilattice_200 p
a0 p
a1 p
a2 = ()
data T_MeetSemilattice_200
  = C_MeetSemilattice'46'constructor_4629 (AgdaAny ->
                                           AgdaAny -> AgdaAny)
                                          MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsMeetSemilattice_180
-- Relation.Binary.Lattice.Bundles.MeetSemilattice.Carrier
d_Carrier_218 :: T_MeetSemilattice_200 -> ()
d_Carrier_218 :: T_MeetSemilattice_200 -> ()
d_Carrier_218 = T_MeetSemilattice_200 -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._≈_
d__'8776'__220 :: T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> ()
d__'8776'__220 :: T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> ()
d__'8776'__220 = T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._≤_
d__'8804'__222 :: T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> ()
d__'8804'__222 :: T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> ()
d__'8804'__222 = T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._∧_
d__'8743'__224 ::
  T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__224 :: T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__224 T_MeetSemilattice_200
v0
  = case T_MeetSemilattice_200 -> T_MeetSemilattice_200
forall a b. a -> b
coe T_MeetSemilattice_200
v0 of
      C_MeetSemilattice'46'constructor_4629 AgdaAny -> AgdaAny -> AgdaAny
v4 T_IsMeetSemilattice_180
v5 -> (AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny
v4
      T_MeetSemilattice_200
_ -> AgdaAny -> AgdaAny -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.MeetSemilattice.isMeetSemilattice
d_isMeetSemilattice_226 ::
  T_MeetSemilattice_200 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsMeetSemilattice_180
d_isMeetSemilattice_226 :: T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 T_MeetSemilattice_200
v0
  = case T_MeetSemilattice_200 -> T_MeetSemilattice_200
forall a b. a -> b
coe T_MeetSemilattice_200
v0 of
      C_MeetSemilattice'46'constructor_4629 AgdaAny -> AgdaAny -> AgdaAny
v4 T_IsMeetSemilattice_180
v5 -> T_IsMeetSemilattice_180 -> T_IsMeetSemilattice_180
forall a b. a -> b
coe T_IsMeetSemilattice_180
v5
      T_MeetSemilattice_200
_ -> T_IsMeetSemilattice_180
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.antisym
d_antisym_230 ::
  T_MeetSemilattice_200 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_antisym_230 :: T_MeetSemilattice_200
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_antisym_230 T_MeetSemilattice_200
v0
  = (T_IsPartialOrder_174
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsPartialOrder_174
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_antisym_184
      ((T_IsMeetSemilattice_180 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
         ((T_MeetSemilattice_200 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200
v0)))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.infimum
d_infimum_232 ::
  T_MeetSemilattice_200 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_infimum_232 :: T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> T_Σ_14
d_infimum_232 T_MeetSemilattice_200
v0
  = (T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> T_Σ_14)
-> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_infimum_190
      ((T_MeetSemilattice_200 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200
v0))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.isEquivalence
d_isEquivalence_234 ::
  T_MeetSemilattice_200 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsEquivalence_26
d_isEquivalence_234 :: T_MeetSemilattice_200 -> T_IsEquivalence_26
d_isEquivalence_234 T_MeetSemilattice_200
v0
  = (T_IsPreorder_70 -> T_IsEquivalence_26)
-> AgdaAny -> T_IsEquivalence_26
forall a b. a -> b
coe
      T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsMeetSemilattice_180 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
            ((T_MeetSemilattice_200 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200
v0))))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.isPartialOrder
d_isPartialOrder_236 ::
  T_MeetSemilattice_200 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialOrder_174
d_isPartialOrder_236 :: T_MeetSemilattice_200 -> T_IsPartialOrder_174
d_isPartialOrder_236 T_MeetSemilattice_200
v0
  = (T_IsMeetSemilattice_180 -> T_IsPartialOrder_174)
-> AgdaAny -> T_IsPartialOrder_174
forall a b. a -> b
coe
      T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
      ((T_MeetSemilattice_200 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200
v0))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.isPreorder
d_isPreorder_238 ::
  T_MeetSemilattice_200 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPreorder_70
d_isPreorder_238 :: T_MeetSemilattice_200 -> T_IsPreorder_70
d_isPreorder_238 T_MeetSemilattice_200
v0
  = (T_IsPartialOrder_174 -> T_IsPreorder_70)
-> AgdaAny -> T_IsPreorder_70
forall a b. a -> b
coe
      T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
      ((T_IsMeetSemilattice_180 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
         ((T_MeetSemilattice_200 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200
v0)))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.refl
d_refl_240 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_MeetSemilattice_200 -> AgdaAny -> AgdaAny
d_refl_240 :: () -> () -> () -> T_MeetSemilattice_200 -> AgdaAny -> AgdaAny
d_refl_240 ~()
v0 ~()
v1 ~()
v2 T_MeetSemilattice_200
v3 = T_MeetSemilattice_200 -> AgdaAny -> AgdaAny
du_refl_240 T_MeetSemilattice_200
v3
du_refl_240 :: T_MeetSemilattice_200 -> AgdaAny -> AgdaAny
du_refl_240 :: T_MeetSemilattice_200 -> AgdaAny -> AgdaAny
du_refl_240 T_MeetSemilattice_200
v0
  = let v1 :: T_IsMeetSemilattice_180
v1 = T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> T_MeetSemilattice_200
forall a b. a -> b
coe T_MeetSemilattice_200
v0) in
    AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
                 (T_IsMeetSemilattice_180 -> T_IsMeetSemilattice_180
forall a b. a -> b
coe T_IsMeetSemilattice_180
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70 -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_refl_98
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.reflexive
d_reflexive_242 ::
  T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_reflexive_242 :: T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_reflexive_242 T_MeetSemilattice_200
v0
  = (T_IsPreorder_70 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsPreorder_70 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_reflexive_82
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsMeetSemilattice_180 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
            ((T_MeetSemilattice_200 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200
v0))))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.trans
d_trans_244 ::
  T_MeetSemilattice_200 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_244 :: T_MeetSemilattice_200
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_244 T_MeetSemilattice_200
v0
  = (T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_84
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsMeetSemilattice_180 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
            ((T_MeetSemilattice_200 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200
v0))))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.x∧y≤x
d_x'8743'y'8804'x_246 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8743'y'8804'x_246 :: ()
-> ()
-> ()
-> T_MeetSemilattice_200
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8743'y'8804'x_246 ~()
v0 ~()
v1 ~()
v2 T_MeetSemilattice_200
v3 = T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_246 T_MeetSemilattice_200
v3
du_x'8743'y'8804'x_246 ::
  T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_246 :: T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_246 T_MeetSemilattice_200
v0
  = (T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8743'y'8804'x_196
      ((T_MeetSemilattice_200 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200
v0))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.x∧y≤y
d_x'8743'y'8804'y_248 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8743'y'8804'y_248 :: ()
-> ()
-> ()
-> T_MeetSemilattice_200
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8743'y'8804'y_248 ~()
v0 ~()
v1 ~()
v2 T_MeetSemilattice_200
v3 = T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_248 T_MeetSemilattice_200
v3
du_x'8743'y'8804'y_248 ::
  T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_248 :: T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_248 T_MeetSemilattice_200
v0
  = (T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8743'y'8804'y_208
      ((T_MeetSemilattice_200 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200
v0))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.∧-greatest
d_'8743''45'greatest_250 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_MeetSemilattice_200 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8743''45'greatest_250 :: ()
-> ()
-> ()
-> T_MeetSemilattice_200
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8743''45'greatest_250 ~()
v0 ~()
v1 ~()
v2 T_MeetSemilattice_200
v3
  = T_MeetSemilattice_200
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_250 T_MeetSemilattice_200
v3
du_'8743''45'greatest_250 ::
  T_MeetSemilattice_200 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_250 :: T_MeetSemilattice_200
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_250 T_MeetSemilattice_200
v0
  = (T_IsMeetSemilattice_180
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_IsMeetSemilattice_180
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_'8743''45'greatest_222
      ((T_MeetSemilattice_200 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200
v0))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.∼-resp-≈
d_'8764''45'resp'45''8776'_252 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_MeetSemilattice_200 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8764''45'resp'45''8776'_252 :: () -> () -> () -> T_MeetSemilattice_200 -> T_Σ_14
d_'8764''45'resp'45''8776'_252 ~()
v0 ~()
v1 ~()
v2 T_MeetSemilattice_200
v3
  = T_MeetSemilattice_200 -> T_Σ_14
du_'8764''45'resp'45''8776'_252 T_MeetSemilattice_200
v3
du_'8764''45'resp'45''8776'_252 ::
  T_MeetSemilattice_200 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8764''45'resp'45''8776'_252 :: T_MeetSemilattice_200 -> T_Σ_14
du_'8764''45'resp'45''8776'_252 T_MeetSemilattice_200
v0
  = let v1 :: T_IsMeetSemilattice_180
v1 = T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> T_MeetSemilattice_200
forall a b. a -> b
coe T_MeetSemilattice_200
v0) in
    AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
                 (T_IsMeetSemilattice_180 -> T_IsMeetSemilattice_180
forall a b. a -> b
coe T_IsMeetSemilattice_180
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70 -> T_Σ_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70 -> T_Σ_14
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'45''8776'_118
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.∼-respʳ-≈
d_'8764''45'resp'691''45''8776'_254 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_MeetSemilattice_200 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8764''45'resp'691''45''8776'_254 :: ()
-> ()
-> ()
-> T_MeetSemilattice_200
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8764''45'resp'691''45''8776'_254 ~()
v0 ~()
v1 ~()
v2 T_MeetSemilattice_200
v3
  = T_MeetSemilattice_200
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_254 T_MeetSemilattice_200
v3
du_'8764''45'resp'691''45''8776'_254 ::
  T_MeetSemilattice_200 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_254 :: T_MeetSemilattice_200
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_254 T_MeetSemilattice_200
v0
  = let v1 :: T_IsMeetSemilattice_180
v1 = T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> T_MeetSemilattice_200
forall a b. a -> b
coe T_MeetSemilattice_200
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
                 (T_IsMeetSemilattice_180 -> T_IsMeetSemilattice_180
forall a b. a -> b
coe T_IsMeetSemilattice_180
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'691''45''8776'_116
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.∼-respˡ-≈
d_'8764''45'resp'737''45''8776'_256 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_MeetSemilattice_200 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8764''45'resp'737''45''8776'_256 :: ()
-> ()
-> ()
-> T_MeetSemilattice_200
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8764''45'resp'737''45''8776'_256 ~()
v0 ~()
v1 ~()
v2 T_MeetSemilattice_200
v3
  = T_MeetSemilattice_200
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_256 T_MeetSemilattice_200
v3
du_'8764''45'resp'737''45''8776'_256 ::
  T_MeetSemilattice_200 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_256 :: T_MeetSemilattice_200
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_256 T_MeetSemilattice_200
v0
  = let v1 :: T_IsMeetSemilattice_180
v1 = T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> T_MeetSemilattice_200
forall a b. a -> b
coe T_MeetSemilattice_200
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
                 (T_IsMeetSemilattice_180 -> T_IsMeetSemilattice_180
forall a b. a -> b
coe T_IsMeetSemilattice_180
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'737''45''8776'_114
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.≲-resp-≈
d_'8818''45'resp'45''8776'_258 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_MeetSemilattice_200 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8818''45'resp'45''8776'_258 :: () -> () -> () -> T_MeetSemilattice_200 -> T_Σ_14
d_'8818''45'resp'45''8776'_258 ~()
v0 ~()
v1 ~()
v2 T_MeetSemilattice_200
v3
  = T_MeetSemilattice_200 -> T_Σ_14
du_'8818''45'resp'45''8776'_258 T_MeetSemilattice_200
v3
du_'8818''45'resp'45''8776'_258 ::
  T_MeetSemilattice_200 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8818''45'resp'45''8776'_258 :: T_MeetSemilattice_200 -> T_Σ_14
du_'8818''45'resp'45''8776'_258 T_MeetSemilattice_200
v0
  = let v1 :: T_IsMeetSemilattice_180
v1 = T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> T_MeetSemilattice_200
forall a b. a -> b
coe T_MeetSemilattice_200
v0) in
    AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
                 (T_IsMeetSemilattice_180 -> T_IsMeetSemilattice_180
forall a b. a -> b
coe T_IsMeetSemilattice_180
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70 -> T_Σ_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70 -> T_Σ_14
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'45''8776'_112
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.≲-respʳ-≈
d_'8818''45'resp'691''45''8776'_260 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_MeetSemilattice_200 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8818''45'resp'691''45''8776'_260 :: ()
-> ()
-> ()
-> T_MeetSemilattice_200
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8818''45'resp'691''45''8776'_260 ~()
v0 ~()
v1 ~()
v2 T_MeetSemilattice_200
v3
  = T_MeetSemilattice_200
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_260 T_MeetSemilattice_200
v3
du_'8818''45'resp'691''45''8776'_260 ::
  T_MeetSemilattice_200 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_260 :: T_MeetSemilattice_200
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_260 T_MeetSemilattice_200
v0
  = let v1 :: T_IsMeetSemilattice_180
v1 = T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> T_MeetSemilattice_200
forall a b. a -> b
coe T_MeetSemilattice_200
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
                 (T_IsMeetSemilattice_180 -> T_IsMeetSemilattice_180
forall a b. a -> b
coe T_IsMeetSemilattice_180
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'691''45''8776'_106
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.≲-respˡ-≈
d_'8818''45'resp'737''45''8776'_262 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_MeetSemilattice_200 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8818''45'resp'737''45''8776'_262 :: ()
-> ()
-> ()
-> T_MeetSemilattice_200
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8818''45'resp'737''45''8776'_262 ~()
v0 ~()
v1 ~()
v2 T_MeetSemilattice_200
v3
  = T_MeetSemilattice_200
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_262 T_MeetSemilattice_200
v3
du_'8818''45'resp'737''45''8776'_262 ::
  T_MeetSemilattice_200 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_262 :: T_MeetSemilattice_200
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_262 T_MeetSemilattice_200
v0
  = let v1 :: T_IsMeetSemilattice_180
v1 = T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> T_MeetSemilattice_200
forall a b. a -> b
coe T_MeetSemilattice_200
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
                 (T_IsMeetSemilattice_180 -> T_IsMeetSemilattice_180
forall a b. a -> b
coe T_IsMeetSemilattice_180
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'737''45''8776'_100
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.Eq.isPartialEquivalence
d_isPartialEquivalence_266 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_MeetSemilattice_200 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialEquivalence_16
d_isPartialEquivalence_266 :: ()
-> () -> () -> T_MeetSemilattice_200 -> T_IsPartialEquivalence_16
d_isPartialEquivalence_266 ~()
v0 ~()
v1 ~()
v2 T_MeetSemilattice_200
v3
  = T_MeetSemilattice_200 -> T_IsPartialEquivalence_16
du_isPartialEquivalence_266 T_MeetSemilattice_200
v3
du_isPartialEquivalence_266 ::
  T_MeetSemilattice_200 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialEquivalence_16
du_isPartialEquivalence_266 :: T_MeetSemilattice_200 -> T_IsPartialEquivalence_16
du_isPartialEquivalence_266 T_MeetSemilattice_200
v0
  = let v1 :: T_IsMeetSemilattice_180
v1 = T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> T_MeetSemilattice_200
forall a b. a -> b
coe T_MeetSemilattice_200
v0) in
    AgdaAny -> T_IsPartialEquivalence_16
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
                 (T_IsMeetSemilattice_180 -> T_IsMeetSemilattice_180
forall a b. a -> b
coe T_IsMeetSemilattice_180
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPreorder_70
v3
                = T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                    (T_IsPartialOrder_174 -> T_IsPartialOrder_174
forall a b. a -> b
coe T_IsPartialOrder_174
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsEquivalence_26 -> T_IsPartialEquivalence_16)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsEquivalence_26 -> T_IsPartialEquivalence_16
MAlonzo.Code.Relation.Binary.Structures.du_isPartialEquivalence_42
               ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                  (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v3)))))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.Eq.refl
d_refl_268 :: T_MeetSemilattice_200 -> AgdaAny -> AgdaAny
d_refl_268 :: T_MeetSemilattice_200 -> AgdaAny -> AgdaAny
d_refl_268 T_MeetSemilattice_200
v0
  = (T_IsEquivalence_26 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsMeetSemilattice_180 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
               ((T_MeetSemilattice_200 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200
v0)))))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.Eq.reflexive
d_reflexive_270 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_MeetSemilattice_200 ->
  AgdaAny ->
  AgdaAny ->
  MAlonzo.Code.Agda.Builtin.Equality.T__'8801'__12 -> AgdaAny
d_reflexive_270 :: ()
-> ()
-> ()
-> T_MeetSemilattice_200
-> AgdaAny
-> AgdaAny
-> T__'8801'__12
-> AgdaAny
d_reflexive_270 ~()
v0 ~()
v1 ~()
v2 T_MeetSemilattice_200
v3 = T_MeetSemilattice_200
-> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
du_reflexive_270 T_MeetSemilattice_200
v3
du_reflexive_270 ::
  T_MeetSemilattice_200 ->
  AgdaAny ->
  AgdaAny ->
  MAlonzo.Code.Agda.Builtin.Equality.T__'8801'__12 -> AgdaAny
du_reflexive_270 :: T_MeetSemilattice_200
-> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
du_reflexive_270 T_MeetSemilattice_200
v0
  = let v1 :: T_IsMeetSemilattice_180
v1 = T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> T_MeetSemilattice_200
forall a b. a -> b
coe T_MeetSemilattice_200
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
                 (T_IsMeetSemilattice_180 -> T_IsMeetSemilattice_180
forall a b. a -> b
coe T_IsMeetSemilattice_180
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPreorder_70
v3
                = T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                    (T_IsPartialOrder_174 -> T_IsPartialOrder_174
forall a b. a -> b
coe T_IsPartialOrder_174
v2) in
          (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny
forall a b. a -> b
coe
            (\ AgdaAny
v4 AgdaAny
v5 AgdaAny
v6 ->
               (T_IsEquivalence_26 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                 T_IsEquivalence_26 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_reflexive_40
                 ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                    T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                    (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v3))
                 AgdaAny
v4)))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.Eq.sym
d_sym_272 ::
  T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_sym_272 :: T_MeetSemilattice_200 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_sym_272 T_MeetSemilattice_200
v0
  = (T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsMeetSemilattice_180 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
               ((T_MeetSemilattice_200 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200
v0)))))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.Eq.trans
d_trans_274 ::
  T_MeetSemilattice_200 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_274 :: T_MeetSemilattice_200
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_274 T_MeetSemilattice_200
v0
  = (T_IsEquivalence_26
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_38
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsMeetSemilattice_180 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
               ((T_MeetSemilattice_200 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200
v0)))))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice.poset
d_poset_276 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_MeetSemilattice_200 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314
d_poset_276 :: () -> () -> () -> T_MeetSemilattice_200 -> T_Poset_314
d_poset_276 ~()
v0 ~()
v1 ~()
v2 T_MeetSemilattice_200
v3 = T_MeetSemilattice_200 -> T_Poset_314
du_poset_276 T_MeetSemilattice_200
v3
du_poset_276 ::
  T_MeetSemilattice_200 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314
du_poset_276 :: T_MeetSemilattice_200 -> T_Poset_314
du_poset_276 T_MeetSemilattice_200
v0
  = (T_IsPartialOrder_174 -> T_Poset_314)
-> T_IsPartialOrder_174 -> T_Poset_314
forall a b. a -> b
coe
      T_IsPartialOrder_174 -> T_Poset_314
MAlonzo.Code.Relation.Binary.Bundles.C_Poset'46'constructor_6389
      (T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
         ((T_MeetSemilattice_200 -> T_IsMeetSemilattice_180)
-> AgdaAny -> T_IsMeetSemilattice_180
forall a b. a -> b
coe T_MeetSemilattice_200 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_226 (T_MeetSemilattice_200 -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200
v0)))
-- Relation.Binary.Lattice.Bundles.MeetSemilattice._.preorder
d_preorder_280 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_MeetSemilattice_200 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132
d_preorder_280 :: () -> () -> () -> T_MeetSemilattice_200 -> T_Preorder_132
d_preorder_280 ~()
v0 ~()
v1 ~()
v2 T_MeetSemilattice_200
v3 = T_MeetSemilattice_200 -> T_Preorder_132
du_preorder_280 T_MeetSemilattice_200
v3
du_preorder_280 ::
  T_MeetSemilattice_200 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132
du_preorder_280 :: T_MeetSemilattice_200 -> T_Preorder_132
du_preorder_280 T_MeetSemilattice_200
v0
  = (T_Poset_314 -> T_Preorder_132) -> AgdaAny -> T_Preorder_132
forall a b. a -> b
coe
      T_Poset_314 -> T_Preorder_132
MAlonzo.Code.Relation.Binary.Bundles.du_preorder_344
      ((T_MeetSemilattice_200 -> T_Poset_314) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200 -> T_Poset_314
du_poset_276 (T_MeetSemilattice_200 -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200
v0))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice
d_BoundedMeetSemilattice_288 :: p -> p -> p -> ()
d_BoundedMeetSemilattice_288 p
a0 p
a1 p
a2 = ()
data T_BoundedMeetSemilattice_288
  = C_BoundedMeetSemilattice'46'constructor_6659 (AgdaAny ->
                                                  AgdaAny -> AgdaAny)
                                                 AgdaAny
                                                 MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedMeetSemilattice_274
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice.Carrier
d_Carrier_308 :: T_BoundedMeetSemilattice_288 -> ()
d_Carrier_308 :: T_BoundedMeetSemilattice_288 -> ()
d_Carrier_308 = T_BoundedMeetSemilattice_288 -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._≈_
d__'8776'__310 ::
  T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny -> ()
d__'8776'__310 :: T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny -> ()
d__'8776'__310 = T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._≤_
d__'8804'__312 ::
  T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny -> ()
d__'8804'__312 :: T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny -> ()
d__'8804'__312 = T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._∧_
d__'8743'__314 ::
  T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__314 :: T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__314 T_BoundedMeetSemilattice_288
v0
  = case T_BoundedMeetSemilattice_288 -> T_BoundedMeetSemilattice_288
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0 of
      C_BoundedMeetSemilattice'46'constructor_6659 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny
v5 T_IsBoundedMeetSemilattice_274
v6 -> (AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny
v4
      T_BoundedMeetSemilattice_288
_ -> AgdaAny -> AgdaAny -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice.⊤
d_'8868'_316 :: T_BoundedMeetSemilattice_288 -> AgdaAny
d_'8868'_316 :: T_BoundedMeetSemilattice_288 -> AgdaAny
d_'8868'_316 T_BoundedMeetSemilattice_288
v0
  = case T_BoundedMeetSemilattice_288 -> T_BoundedMeetSemilattice_288
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0 of
      C_BoundedMeetSemilattice'46'constructor_6659 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny
v5 T_IsBoundedMeetSemilattice_274
v6 -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v5
      T_BoundedMeetSemilattice_288
_ -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice.isBoundedMeetSemilattice
d_isBoundedMeetSemilattice_318 ::
  T_BoundedMeetSemilattice_288 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 :: T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 T_BoundedMeetSemilattice_288
v0
  = case T_BoundedMeetSemilattice_288 -> T_BoundedMeetSemilattice_288
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0 of
      C_BoundedMeetSemilattice'46'constructor_6659 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny
v5 T_IsBoundedMeetSemilattice_274
v6 -> T_IsBoundedMeetSemilattice_274 -> T_IsBoundedMeetSemilattice_274
forall a b. a -> b
coe T_IsBoundedMeetSemilattice_274
v6
      T_BoundedMeetSemilattice_288
_ -> T_IsBoundedMeetSemilattice_274
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.antisym
d_antisym_322 ::
  T_BoundedMeetSemilattice_288 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_antisym_322 :: T_BoundedMeetSemilattice_288
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_antisym_322 T_BoundedMeetSemilattice_288
v0
  = (T_IsPartialOrder_174
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsPartialOrder_174
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_antisym_184
      ((T_IsMeetSemilattice_180 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
         ((T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
            ((T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0))))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.infimum
d_infimum_324 ::
  T_BoundedMeetSemilattice_288 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_infimum_324 :: T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny -> T_Σ_14
d_infimum_324 T_BoundedMeetSemilattice_288
v0
  = (T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> T_Σ_14)
-> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_infimum_190
      ((T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
         ((T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0)))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.isEquivalence
d_isEquivalence_326 ::
  T_BoundedMeetSemilattice_288 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsEquivalence_26
d_isEquivalence_326 :: T_BoundedMeetSemilattice_288 -> T_IsEquivalence_26
d_isEquivalence_326 T_BoundedMeetSemilattice_288
v0
  = (T_IsPreorder_70 -> T_IsEquivalence_26)
-> AgdaAny -> T_IsEquivalence_26
forall a b. a -> b
coe
      T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsMeetSemilattice_180 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
            ((T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
               ((T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0)))))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.isMeetSemilattice
d_isMeetSemilattice_328 ::
  T_BoundedMeetSemilattice_288 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsMeetSemilattice_180
d_isMeetSemilattice_328 :: T_BoundedMeetSemilattice_288 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_328 T_BoundedMeetSemilattice_288
v0
  = (T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180)
-> AgdaAny -> T_IsMeetSemilattice_180
forall a b. a -> b
coe
      T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
      ((T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.isPartialOrder
d_isPartialOrder_330 ::
  T_BoundedMeetSemilattice_288 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialOrder_174
d_isPartialOrder_330 :: T_BoundedMeetSemilattice_288 -> T_IsPartialOrder_174
d_isPartialOrder_330 T_BoundedMeetSemilattice_288
v0
  = (T_IsMeetSemilattice_180 -> T_IsPartialOrder_174)
-> AgdaAny -> T_IsPartialOrder_174
forall a b. a -> b
coe
      T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
      ((T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
         ((T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0)))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.isPreorder
d_isPreorder_332 ::
  T_BoundedMeetSemilattice_288 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPreorder_70
d_isPreorder_332 :: T_BoundedMeetSemilattice_288 -> T_IsPreorder_70
d_isPreorder_332 T_BoundedMeetSemilattice_288
v0
  = (T_IsPartialOrder_174 -> T_IsPreorder_70)
-> AgdaAny -> T_IsPreorder_70
forall a b. a -> b
coe
      T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
      ((T_IsMeetSemilattice_180 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
         ((T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
            ((T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0))))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.maximum
d_maximum_334 :: T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny
d_maximum_334 :: T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny
d_maximum_334 T_BoundedMeetSemilattice_288
v0
  = (T_IsBoundedMeetSemilattice_274 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsBoundedMeetSemilattice_274 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_maximum_286
      ((T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.refl
d_refl_336 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny
d_refl_336 :: ()
-> () -> () -> T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny
d_refl_336 ~()
v0 ~()
v1 ~()
v2 T_BoundedMeetSemilattice_288
v3 = T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny
du_refl_336 T_BoundedMeetSemilattice_288
v3
du_refl_336 :: T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny
du_refl_336 :: T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny
du_refl_336 T_BoundedMeetSemilattice_288
v0
  = let v1 :: T_IsBoundedMeetSemilattice_274
v1 = T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> T_BoundedMeetSemilattice_288
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0) in
    AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsMeetSemilattice_180
v2
             = T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
                 (T_IsBoundedMeetSemilattice_274 -> T_IsBoundedMeetSemilattice_274
forall a b. a -> b
coe T_IsBoundedMeetSemilattice_274
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
                    (T_IsMeetSemilattice_180 -> T_IsMeetSemilattice_180
forall a b. a -> b
coe T_IsMeetSemilattice_180
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70 -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_refl_98
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.reflexive
d_reflexive_338 ::
  T_BoundedMeetSemilattice_288 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_reflexive_338 :: T_BoundedMeetSemilattice_288
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_reflexive_338 T_BoundedMeetSemilattice_288
v0
  = (T_IsPreorder_70 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsPreorder_70 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_reflexive_82
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsMeetSemilattice_180 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
            ((T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
               ((T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0)))))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.trans
d_trans_340 ::
  T_BoundedMeetSemilattice_288 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_340 :: T_BoundedMeetSemilattice_288
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_340 T_BoundedMeetSemilattice_288
v0
  = (T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_84
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsMeetSemilattice_180 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
            ((T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
               ((T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0)))))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.x∧y≤x
d_x'8743'y'8804'x_342 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8743'y'8804'x_342 :: ()
-> ()
-> ()
-> T_BoundedMeetSemilattice_288
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8743'y'8804'x_342 ~()
v0 ~()
v1 ~()
v2 T_BoundedMeetSemilattice_288
v3 = T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_342 T_BoundedMeetSemilattice_288
v3
du_x'8743'y'8804'x_342 ::
  T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_342 :: T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_342 T_BoundedMeetSemilattice_288
v0
  = let v1 :: T_IsBoundedMeetSemilattice_274
v1 = T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> T_BoundedMeetSemilattice_288
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8743'y'8804'x_196
         ((T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
            (T_IsBoundedMeetSemilattice_274 -> AgdaAny
forall a b. a -> b
coe T_IsBoundedMeetSemilattice_274
v1)))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.x∧y≤y
d_x'8743'y'8804'y_344 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8743'y'8804'y_344 :: ()
-> ()
-> ()
-> T_BoundedMeetSemilattice_288
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8743'y'8804'y_344 ~()
v0 ~()
v1 ~()
v2 T_BoundedMeetSemilattice_288
v3 = T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_344 T_BoundedMeetSemilattice_288
v3
du_x'8743'y'8804'y_344 ::
  T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_344 :: T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_344 T_BoundedMeetSemilattice_288
v0
  = let v1 :: T_IsBoundedMeetSemilattice_274
v1 = T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> T_BoundedMeetSemilattice_288
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8743'y'8804'y_208
         ((T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
            (T_IsBoundedMeetSemilattice_274 -> AgdaAny
forall a b. a -> b
coe T_IsBoundedMeetSemilattice_274
v1)))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.∧-greatest
d_'8743''45'greatest_346 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedMeetSemilattice_288 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8743''45'greatest_346 :: ()
-> ()
-> ()
-> T_BoundedMeetSemilattice_288
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8743''45'greatest_346 ~()
v0 ~()
v1 ~()
v2 T_BoundedMeetSemilattice_288
v3
  = T_BoundedMeetSemilattice_288
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_346 T_BoundedMeetSemilattice_288
v3
du_'8743''45'greatest_346 ::
  T_BoundedMeetSemilattice_288 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_346 :: T_BoundedMeetSemilattice_288
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_346 T_BoundedMeetSemilattice_288
v0
  = let v1 :: T_IsBoundedMeetSemilattice_274
v1 = T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> T_BoundedMeetSemilattice_288
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsMeetSemilattice_180
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsMeetSemilattice_180
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_'8743''45'greatest_222
         ((T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
            (T_IsBoundedMeetSemilattice_274 -> AgdaAny
forall a b. a -> b
coe T_IsBoundedMeetSemilattice_274
v1)))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.∼-resp-≈
d_'8764''45'resp'45''8776'_348 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedMeetSemilattice_288 ->
  MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8764''45'resp'45''8776'_348 :: () -> () -> () -> T_BoundedMeetSemilattice_288 -> T_Σ_14
d_'8764''45'resp'45''8776'_348 ~()
v0 ~()
v1 ~()
v2 T_BoundedMeetSemilattice_288
v3
  = T_BoundedMeetSemilattice_288 -> T_Σ_14
du_'8764''45'resp'45''8776'_348 T_BoundedMeetSemilattice_288
v3
du_'8764''45'resp'45''8776'_348 ::
  T_BoundedMeetSemilattice_288 ->
  MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8764''45'resp'45''8776'_348 :: T_BoundedMeetSemilattice_288 -> T_Σ_14
du_'8764''45'resp'45''8776'_348 T_BoundedMeetSemilattice_288
v0
  = let v1 :: T_IsBoundedMeetSemilattice_274
v1 = T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> T_BoundedMeetSemilattice_288
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0) in
    AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      (let v2 :: T_IsMeetSemilattice_180
v2
             = T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
                 (T_IsBoundedMeetSemilattice_274 -> T_IsBoundedMeetSemilattice_274
forall a b. a -> b
coe T_IsBoundedMeetSemilattice_274
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
                    (T_IsMeetSemilattice_180 -> T_IsMeetSemilattice_180
forall a b. a -> b
coe T_IsMeetSemilattice_180
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70 -> T_Σ_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70 -> T_Σ_14
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'45''8776'_118
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.∼-respʳ-≈
d_'8764''45'resp'691''45''8776'_350 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedMeetSemilattice_288 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8764''45'resp'691''45''8776'_350 :: ()
-> ()
-> ()
-> T_BoundedMeetSemilattice_288
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8764''45'resp'691''45''8776'_350 ~()
v0 ~()
v1 ~()
v2 T_BoundedMeetSemilattice_288
v3
  = T_BoundedMeetSemilattice_288
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_350 T_BoundedMeetSemilattice_288
v3
du_'8764''45'resp'691''45''8776'_350 ::
  T_BoundedMeetSemilattice_288 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_350 :: T_BoundedMeetSemilattice_288
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_350 T_BoundedMeetSemilattice_288
v0
  = let v1 :: T_IsBoundedMeetSemilattice_274
v1 = T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> T_BoundedMeetSemilattice_288
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsMeetSemilattice_180
v2
             = T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
                 (T_IsBoundedMeetSemilattice_274 -> T_IsBoundedMeetSemilattice_274
forall a b. a -> b
coe T_IsBoundedMeetSemilattice_274
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
                    (T_IsMeetSemilattice_180 -> T_IsMeetSemilattice_180
forall a b. a -> b
coe T_IsMeetSemilattice_180
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'691''45''8776'_116
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.∼-respˡ-≈
d_'8764''45'resp'737''45''8776'_352 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedMeetSemilattice_288 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8764''45'resp'737''45''8776'_352 :: ()
-> ()
-> ()
-> T_BoundedMeetSemilattice_288
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8764''45'resp'737''45''8776'_352 ~()
v0 ~()
v1 ~()
v2 T_BoundedMeetSemilattice_288
v3
  = T_BoundedMeetSemilattice_288
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_352 T_BoundedMeetSemilattice_288
v3
du_'8764''45'resp'737''45''8776'_352 ::
  T_BoundedMeetSemilattice_288 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_352 :: T_BoundedMeetSemilattice_288
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_352 T_BoundedMeetSemilattice_288
v0
  = let v1 :: T_IsBoundedMeetSemilattice_274
v1 = T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> T_BoundedMeetSemilattice_288
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsMeetSemilattice_180
v2
             = T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
                 (T_IsBoundedMeetSemilattice_274 -> T_IsBoundedMeetSemilattice_274
forall a b. a -> b
coe T_IsBoundedMeetSemilattice_274
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
                    (T_IsMeetSemilattice_180 -> T_IsMeetSemilattice_180
forall a b. a -> b
coe T_IsMeetSemilattice_180
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'737''45''8776'_114
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.≲-resp-≈
d_'8818''45'resp'45''8776'_354 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedMeetSemilattice_288 ->
  MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8818''45'resp'45''8776'_354 :: () -> () -> () -> T_BoundedMeetSemilattice_288 -> T_Σ_14
d_'8818''45'resp'45''8776'_354 ~()
v0 ~()
v1 ~()
v2 T_BoundedMeetSemilattice_288
v3
  = T_BoundedMeetSemilattice_288 -> T_Σ_14
du_'8818''45'resp'45''8776'_354 T_BoundedMeetSemilattice_288
v3
du_'8818''45'resp'45''8776'_354 ::
  T_BoundedMeetSemilattice_288 ->
  MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8818''45'resp'45''8776'_354 :: T_BoundedMeetSemilattice_288 -> T_Σ_14
du_'8818''45'resp'45''8776'_354 T_BoundedMeetSemilattice_288
v0
  = let v1 :: T_IsBoundedMeetSemilattice_274
v1 = T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> T_BoundedMeetSemilattice_288
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0) in
    AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      (let v2 :: T_IsMeetSemilattice_180
v2
             = T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
                 (T_IsBoundedMeetSemilattice_274 -> T_IsBoundedMeetSemilattice_274
forall a b. a -> b
coe T_IsBoundedMeetSemilattice_274
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
                    (T_IsMeetSemilattice_180 -> T_IsMeetSemilattice_180
forall a b. a -> b
coe T_IsMeetSemilattice_180
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70 -> T_Σ_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70 -> T_Σ_14
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'45''8776'_112
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.≲-respʳ-≈
d_'8818''45'resp'691''45''8776'_356 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedMeetSemilattice_288 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8818''45'resp'691''45''8776'_356 :: ()
-> ()
-> ()
-> T_BoundedMeetSemilattice_288
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8818''45'resp'691''45''8776'_356 ~()
v0 ~()
v1 ~()
v2 T_BoundedMeetSemilattice_288
v3
  = T_BoundedMeetSemilattice_288
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_356 T_BoundedMeetSemilattice_288
v3
du_'8818''45'resp'691''45''8776'_356 ::
  T_BoundedMeetSemilattice_288 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_356 :: T_BoundedMeetSemilattice_288
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_356 T_BoundedMeetSemilattice_288
v0
  = let v1 :: T_IsBoundedMeetSemilattice_274
v1 = T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> T_BoundedMeetSemilattice_288
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsMeetSemilattice_180
v2
             = T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
                 (T_IsBoundedMeetSemilattice_274 -> T_IsBoundedMeetSemilattice_274
forall a b. a -> b
coe T_IsBoundedMeetSemilattice_274
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
                    (T_IsMeetSemilattice_180 -> T_IsMeetSemilattice_180
forall a b. a -> b
coe T_IsMeetSemilattice_180
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'691''45''8776'_106
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.≲-respˡ-≈
d_'8818''45'resp'737''45''8776'_358 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedMeetSemilattice_288 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8818''45'resp'737''45''8776'_358 :: ()
-> ()
-> ()
-> T_BoundedMeetSemilattice_288
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8818''45'resp'737''45''8776'_358 ~()
v0 ~()
v1 ~()
v2 T_BoundedMeetSemilattice_288
v3
  = T_BoundedMeetSemilattice_288
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_358 T_BoundedMeetSemilattice_288
v3
du_'8818''45'resp'737''45''8776'_358 ::
  T_BoundedMeetSemilattice_288 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_358 :: T_BoundedMeetSemilattice_288
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_358 T_BoundedMeetSemilattice_288
v0
  = let v1 :: T_IsBoundedMeetSemilattice_274
v1 = T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> T_BoundedMeetSemilattice_288
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsMeetSemilattice_180
v2
             = T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
                 (T_IsBoundedMeetSemilattice_274 -> T_IsBoundedMeetSemilattice_274
forall a b. a -> b
coe T_IsBoundedMeetSemilattice_274
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
                    (T_IsMeetSemilattice_180 -> T_IsMeetSemilattice_180
forall a b. a -> b
coe T_IsMeetSemilattice_180
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'737''45''8776'_100
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.Eq.isPartialEquivalence
d_isPartialEquivalence_362 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedMeetSemilattice_288 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialEquivalence_16
d_isPartialEquivalence_362 :: ()
-> ()
-> ()
-> T_BoundedMeetSemilattice_288
-> T_IsPartialEquivalence_16
d_isPartialEquivalence_362 ~()
v0 ~()
v1 ~()
v2 T_BoundedMeetSemilattice_288
v3
  = T_BoundedMeetSemilattice_288 -> T_IsPartialEquivalence_16
du_isPartialEquivalence_362 T_BoundedMeetSemilattice_288
v3
du_isPartialEquivalence_362 ::
  T_BoundedMeetSemilattice_288 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialEquivalence_16
du_isPartialEquivalence_362 :: T_BoundedMeetSemilattice_288 -> T_IsPartialEquivalence_16
du_isPartialEquivalence_362 T_BoundedMeetSemilattice_288
v0
  = let v1 :: T_IsBoundedMeetSemilattice_274
v1 = T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> T_BoundedMeetSemilattice_288
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0) in
    AgdaAny -> T_IsPartialEquivalence_16
forall a b. a -> b
coe
      (let v2 :: T_IsMeetSemilattice_180
v2
             = T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
                 (T_IsBoundedMeetSemilattice_274 -> T_IsBoundedMeetSemilattice_274
forall a b. a -> b
coe T_IsBoundedMeetSemilattice_274
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
                    (T_IsMeetSemilattice_180 -> T_IsMeetSemilattice_180
forall a b. a -> b
coe T_IsMeetSemilattice_180
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsPreorder_70
v4
                   = T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                       (T_IsPartialOrder_174 -> T_IsPartialOrder_174
forall a b. a -> b
coe T_IsPartialOrder_174
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               ((T_IsEquivalence_26 -> T_IsPartialEquivalence_16)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsEquivalence_26 -> T_IsPartialEquivalence_16
MAlonzo.Code.Relation.Binary.Structures.du_isPartialEquivalence_42
                  ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                     (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v4))))))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.Eq.refl
d_refl_364 :: T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny
d_refl_364 :: T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny
d_refl_364 T_BoundedMeetSemilattice_288
v0
  = (T_IsEquivalence_26 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsMeetSemilattice_180 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
               ((T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
                  ((T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0))))))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.Eq.reflexive
d_reflexive_366 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedMeetSemilattice_288 ->
  AgdaAny ->
  AgdaAny ->
  MAlonzo.Code.Agda.Builtin.Equality.T__'8801'__12 -> AgdaAny
d_reflexive_366 :: ()
-> ()
-> ()
-> T_BoundedMeetSemilattice_288
-> AgdaAny
-> AgdaAny
-> T__'8801'__12
-> AgdaAny
d_reflexive_366 ~()
v0 ~()
v1 ~()
v2 T_BoundedMeetSemilattice_288
v3 = T_BoundedMeetSemilattice_288
-> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
du_reflexive_366 T_BoundedMeetSemilattice_288
v3
du_reflexive_366 ::
  T_BoundedMeetSemilattice_288 ->
  AgdaAny ->
  AgdaAny ->
  MAlonzo.Code.Agda.Builtin.Equality.T__'8801'__12 -> AgdaAny
du_reflexive_366 :: T_BoundedMeetSemilattice_288
-> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
du_reflexive_366 T_BoundedMeetSemilattice_288
v0
  = let v1 :: T_IsBoundedMeetSemilattice_274
v1 = T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> T_BoundedMeetSemilattice_288
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsMeetSemilattice_180
v2
             = T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
                 (T_IsBoundedMeetSemilattice_274 -> T_IsBoundedMeetSemilattice_274
forall a b. a -> b
coe T_IsBoundedMeetSemilattice_274
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
                    (T_IsMeetSemilattice_180 -> T_IsMeetSemilattice_180
forall a b. a -> b
coe T_IsMeetSemilattice_180
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsPreorder_70
v4
                   = T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                       (T_IsPartialOrder_174 -> T_IsPartialOrder_174
forall a b. a -> b
coe T_IsPartialOrder_174
v3) in
             (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny
forall a b. a -> b
coe
               (\ AgdaAny
v5 AgdaAny
v6 AgdaAny
v7 ->
                  (T_IsEquivalence_26 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                    T_IsEquivalence_26 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_reflexive_40
                    ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                       T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                       (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v4))
                    AgdaAny
v5))))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.Eq.sym
d_sym_368 ::
  T_BoundedMeetSemilattice_288 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_sym_368 :: T_BoundedMeetSemilattice_288
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_sym_368 T_BoundedMeetSemilattice_288
v0
  = (T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsMeetSemilattice_180 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
               ((T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
                  ((T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0))))))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.Eq.trans
d_trans_370 ::
  T_BoundedMeetSemilattice_288 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_370 :: T_BoundedMeetSemilattice_288
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_370 T_BoundedMeetSemilattice_288
v0
  = (T_IsEquivalence_26
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_38
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsMeetSemilattice_180 -> T_IsPartialOrder_174)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsMeetSemilattice_180 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_188
               ((T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
                  ((T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0))))))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice.meetSemilattice
d_meetSemilattice_372 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedMeetSemilattice_288 -> T_MeetSemilattice_200
d_meetSemilattice_372 :: ()
-> ()
-> ()
-> T_BoundedMeetSemilattice_288
-> T_MeetSemilattice_200
d_meetSemilattice_372 ~()
v0 ~()
v1 ~()
v2 T_BoundedMeetSemilattice_288
v3 = T_BoundedMeetSemilattice_288 -> T_MeetSemilattice_200
du_meetSemilattice_372 T_BoundedMeetSemilattice_288
v3
du_meetSemilattice_372 ::
  T_BoundedMeetSemilattice_288 -> T_MeetSemilattice_200
du_meetSemilattice_372 :: T_BoundedMeetSemilattice_288 -> T_MeetSemilattice_200
du_meetSemilattice_372 T_BoundedMeetSemilattice_288
v0
  = ((AgdaAny -> AgdaAny -> AgdaAny)
 -> T_IsMeetSemilattice_180 -> T_MeetSemilattice_200)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> T_IsMeetSemilattice_180
-> T_MeetSemilattice_200
forall a b. a -> b
coe
      (AgdaAny -> AgdaAny -> AgdaAny)
-> T_IsMeetSemilattice_180 -> T_MeetSemilattice_200
C_MeetSemilattice'46'constructor_4629 (T_BoundedMeetSemilattice_288 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__314 (T_BoundedMeetSemilattice_288 -> T_BoundedMeetSemilattice_288
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0))
      (T_IsBoundedMeetSemilattice_274 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isMeetSemilattice_284
         ((T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274)
-> AgdaAny -> T_IsBoundedMeetSemilattice_274
forall a b. a -> b
coe T_BoundedMeetSemilattice_288 -> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_318 (T_BoundedMeetSemilattice_288 -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0)))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.poset
d_poset_376 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedMeetSemilattice_288 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314
d_poset_376 :: () -> () -> () -> T_BoundedMeetSemilattice_288 -> T_Poset_314
d_poset_376 ~()
v0 ~()
v1 ~()
v2 T_BoundedMeetSemilattice_288
v3 = T_BoundedMeetSemilattice_288 -> T_Poset_314
du_poset_376 T_BoundedMeetSemilattice_288
v3
du_poset_376 ::
  T_BoundedMeetSemilattice_288 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314
du_poset_376 :: T_BoundedMeetSemilattice_288 -> T_Poset_314
du_poset_376 T_BoundedMeetSemilattice_288
v0
  = (T_MeetSemilattice_200 -> T_Poset_314) -> AgdaAny -> T_Poset_314
forall a b. a -> b
coe T_MeetSemilattice_200 -> T_Poset_314
du_poset_276 ((T_BoundedMeetSemilattice_288 -> T_MeetSemilattice_200)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288 -> T_MeetSemilattice_200
du_meetSemilattice_372 (T_BoundedMeetSemilattice_288 -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0))
-- Relation.Binary.Lattice.Bundles.BoundedMeetSemilattice._.preorder
d_preorder_378 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedMeetSemilattice_288 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132
d_preorder_378 :: () -> () -> () -> T_BoundedMeetSemilattice_288 -> T_Preorder_132
d_preorder_378 ~()
v0 ~()
v1 ~()
v2 T_BoundedMeetSemilattice_288
v3 = T_BoundedMeetSemilattice_288 -> T_Preorder_132
du_preorder_378 T_BoundedMeetSemilattice_288
v3
du_preorder_378 ::
  T_BoundedMeetSemilattice_288 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132
du_preorder_378 :: T_BoundedMeetSemilattice_288 -> T_Preorder_132
du_preorder_378 T_BoundedMeetSemilattice_288
v0
  = let v1 :: t
v1 = (T_BoundedMeetSemilattice_288 -> T_MeetSemilattice_200)
-> AgdaAny -> t
forall a b. a -> b
coe T_BoundedMeetSemilattice_288 -> T_MeetSemilattice_200
du_meetSemilattice_372 (T_BoundedMeetSemilattice_288 -> AgdaAny
forall a b. a -> b
coe T_BoundedMeetSemilattice_288
v0) in
    AgdaAny -> T_Preorder_132
forall a b. a -> b
coe
      ((T_Poset_314 -> T_Preorder_132) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_Poset_314 -> T_Preorder_132
MAlonzo.Code.Relation.Binary.Bundles.du_preorder_344
         ((T_MeetSemilattice_200 -> T_Poset_314) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_MeetSemilattice_200 -> T_Poset_314
du_poset_276 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))
-- Relation.Binary.Lattice.Bundles.Lattice
d_Lattice_386 :: p -> p -> p -> ()
d_Lattice_386 p
a0 p
a1 p
a2 = ()
data T_Lattice_386
  = C_Lattice'46'constructor_8977 (AgdaAny -> AgdaAny -> AgdaAny)
                                  (AgdaAny -> AgdaAny -> AgdaAny)
                                  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsLattice_340
-- Relation.Binary.Lattice.Bundles.Lattice.Carrier
d_Carrier_406 :: T_Lattice_386 -> ()
d_Carrier_406 :: T_Lattice_386 -> ()
d_Carrier_406 = T_Lattice_386 -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.Lattice._≈_
d__'8776'__408 :: T_Lattice_386 -> AgdaAny -> AgdaAny -> ()
d__'8776'__408 :: T_Lattice_386 -> AgdaAny -> AgdaAny -> ()
d__'8776'__408 = T_Lattice_386 -> AgdaAny -> AgdaAny -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.Lattice._≤_
d__'8804'__410 :: T_Lattice_386 -> AgdaAny -> AgdaAny -> ()
d__'8804'__410 :: T_Lattice_386 -> AgdaAny -> AgdaAny -> ()
d__'8804'__410 = T_Lattice_386 -> AgdaAny -> AgdaAny -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.Lattice._∨_
d__'8744'__412 :: T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__412 :: T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__412 T_Lattice_386
v0
  = case T_Lattice_386 -> T_Lattice_386
forall a b. a -> b
coe T_Lattice_386
v0 of
      C_Lattice'46'constructor_8977 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 T_IsLattice_340
v6 -> (AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny
v4
      T_Lattice_386
_ -> AgdaAny -> AgdaAny -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.Lattice._∧_
d__'8743'__414 :: T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__414 :: T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__414 T_Lattice_386
v0
  = case T_Lattice_386 -> T_Lattice_386
forall a b. a -> b
coe T_Lattice_386
v0 of
      C_Lattice'46'constructor_8977 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 T_IsLattice_340
v6 -> (AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny
v5
      T_Lattice_386
_ -> AgdaAny -> AgdaAny -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.Lattice.isLattice
d_isLattice_416 ::
  T_Lattice_386 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsLattice_340
d_isLattice_416 :: T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 T_Lattice_386
v0
  = case T_Lattice_386 -> T_Lattice_386
forall a b. a -> b
coe T_Lattice_386
v0 of
      C_Lattice'46'constructor_8977 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 T_IsLattice_340
v6 -> T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v6
      T_Lattice_386
_ -> T_IsLattice_340
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.Lattice._.antisym
d_antisym_420 ::
  T_Lattice_386 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_antisym_420 :: T_Lattice_386
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_antisym_420 T_Lattice_386
v0
  = (T_IsPartialOrder_174
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsPartialOrder_174
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_antisym_184
      ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
         ((T_Lattice_386 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> AgdaAny
forall a b. a -> b
coe T_Lattice_386
v0)))
-- Relation.Binary.Lattice.Bundles.Lattice._.infimum
d_infimum_422 ::
  T_Lattice_386 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_infimum_422 :: T_Lattice_386 -> AgdaAny -> AgdaAny -> T_Σ_14
d_infimum_422 T_Lattice_386
v0
  = (T_IsLattice_340 -> AgdaAny -> AgdaAny -> T_Σ_14)
-> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      T_IsLattice_340 -> AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_infimum_356
      ((T_Lattice_386 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> AgdaAny
forall a b. a -> b
coe T_Lattice_386
v0))
-- Relation.Binary.Lattice.Bundles.Lattice._.isEquivalence
d_isEquivalence_424 ::
  T_Lattice_386 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsEquivalence_26
d_isEquivalence_424 :: T_Lattice_386 -> T_IsEquivalence_26
d_isEquivalence_424 T_Lattice_386
v0
  = (T_IsPreorder_70 -> T_IsEquivalence_26)
-> AgdaAny -> T_IsEquivalence_26
forall a b. a -> b
coe
      T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
            ((T_Lattice_386 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> AgdaAny
forall a b. a -> b
coe T_Lattice_386
v0))))
-- Relation.Binary.Lattice.Bundles.Lattice._.isJoinSemilattice
d_isJoinSemilattice_426 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsJoinSemilattice_22
d_isJoinSemilattice_426 :: () -> () -> () -> T_Lattice_386 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_426 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3
  = T_Lattice_386 -> T_IsJoinSemilattice_22
du_isJoinSemilattice_426 T_Lattice_386
v3
du_isJoinSemilattice_426 ::
  T_Lattice_386 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsJoinSemilattice_22
du_isJoinSemilattice_426 :: T_Lattice_386 -> T_IsJoinSemilattice_22
du_isJoinSemilattice_426 T_Lattice_386
v0
  = (T_IsLattice_340 -> T_IsJoinSemilattice_22)
-> AgdaAny -> T_IsJoinSemilattice_22
forall a b. a -> b
coe
      T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
      ((T_Lattice_386 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> AgdaAny
forall a b. a -> b
coe T_Lattice_386
v0))
-- Relation.Binary.Lattice.Bundles.Lattice._.isMeetSemilattice
d_isMeetSemilattice_428 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsMeetSemilattice_180
d_isMeetSemilattice_428 :: () -> () -> () -> T_Lattice_386 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_428 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3
  = T_Lattice_386 -> T_IsMeetSemilattice_180
du_isMeetSemilattice_428 T_Lattice_386
v3
du_isMeetSemilattice_428 ::
  T_Lattice_386 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsMeetSemilattice_180
du_isMeetSemilattice_428 :: T_Lattice_386 -> T_IsMeetSemilattice_180
du_isMeetSemilattice_428 T_Lattice_386
v0
  = (T_IsLattice_340 -> T_IsMeetSemilattice_180)
-> AgdaAny -> T_IsMeetSemilattice_180
forall a b. a -> b
coe
      T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
      ((T_Lattice_386 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> AgdaAny
forall a b. a -> b
coe T_Lattice_386
v0))
-- Relation.Binary.Lattice.Bundles.Lattice._.isPartialOrder
d_isPartialOrder_430 ::
  T_Lattice_386 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialOrder_174
d_isPartialOrder_430 :: T_Lattice_386 -> T_IsPartialOrder_174
d_isPartialOrder_430 T_Lattice_386
v0
  = (T_IsLattice_340 -> T_IsPartialOrder_174)
-> AgdaAny -> T_IsPartialOrder_174
forall a b. a -> b
coe
      T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
      ((T_Lattice_386 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> AgdaAny
forall a b. a -> b
coe T_Lattice_386
v0))
-- Relation.Binary.Lattice.Bundles.Lattice._.isPreorder
d_isPreorder_432 ::
  T_Lattice_386 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPreorder_70
d_isPreorder_432 :: T_Lattice_386 -> T_IsPreorder_70
d_isPreorder_432 T_Lattice_386
v0
  = (T_IsPartialOrder_174 -> T_IsPreorder_70)
-> AgdaAny -> T_IsPreorder_70
forall a b. a -> b
coe
      T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
      ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
         ((T_Lattice_386 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> AgdaAny
forall a b. a -> b
coe T_Lattice_386
v0)))
-- Relation.Binary.Lattice.Bundles.Lattice._.refl
d_refl_434 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 -> AgdaAny -> AgdaAny
d_refl_434 :: () -> () -> () -> T_Lattice_386 -> AgdaAny -> AgdaAny
d_refl_434 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3 = T_Lattice_386 -> AgdaAny -> AgdaAny
du_refl_434 T_Lattice_386
v3
du_refl_434 :: T_Lattice_386 -> AgdaAny -> AgdaAny
du_refl_434 :: T_Lattice_386 -> AgdaAny -> AgdaAny
du_refl_434 T_Lattice_386
v0
  = let v1 :: T_IsLattice_340
v1 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> T_Lattice_386
forall a b. a -> b
coe T_Lattice_386
v0) in
    AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                 (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70 -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_refl_98
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.Lattice._.reflexive
d_reflexive_436 ::
  T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_reflexive_436 :: T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_reflexive_436 T_Lattice_386
v0
  = (T_IsPreorder_70 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsPreorder_70 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_reflexive_82
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
            ((T_Lattice_386 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> AgdaAny
forall a b. a -> b
coe T_Lattice_386
v0))))
-- Relation.Binary.Lattice.Bundles.Lattice._.supremum
d_supremum_438 ::
  T_Lattice_386 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_supremum_438 :: T_Lattice_386 -> AgdaAny -> AgdaAny -> T_Σ_14
d_supremum_438 T_Lattice_386
v0
  = (T_IsLattice_340 -> AgdaAny -> AgdaAny -> T_Σ_14)
-> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      T_IsLattice_340 -> AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_supremum_354
      ((T_Lattice_386 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> AgdaAny
forall a b. a -> b
coe T_Lattice_386
v0))
-- Relation.Binary.Lattice.Bundles.Lattice._.trans
d_trans_440 ::
  T_Lattice_386 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_440 :: T_Lattice_386
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_440 T_Lattice_386
v0
  = (T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_84
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
            ((T_Lattice_386 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> AgdaAny
forall a b. a -> b
coe T_Lattice_386
v0))))
-- Relation.Binary.Lattice.Bundles.Lattice._.x∧y≤x
d_x'8743'y'8804'x_442 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8743'y'8804'x_442 :: () -> () -> () -> T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8743'y'8804'x_442 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3 = T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_442 T_Lattice_386
v3
du_x'8743'y'8804'x_442 ::
  T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_442 :: T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_442 T_Lattice_386
v0
  = let v1 :: T_IsLattice_340
v1 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> T_Lattice_386
forall a b. a -> b
coe T_Lattice_386
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8743'y'8804'x_196
         ((T_IsLattice_340 -> T_IsMeetSemilattice_180) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
            (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v1)))
-- Relation.Binary.Lattice.Bundles.Lattice._.x∧y≤y
d_x'8743'y'8804'y_444 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8743'y'8804'y_444 :: () -> () -> () -> T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8743'y'8804'y_444 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3 = T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_444 T_Lattice_386
v3
du_x'8743'y'8804'y_444 ::
  T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_444 :: T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_444 T_Lattice_386
v0
  = let v1 :: T_IsLattice_340
v1 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> T_Lattice_386
forall a b. a -> b
coe T_Lattice_386
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8743'y'8804'y_208
         ((T_IsLattice_340 -> T_IsMeetSemilattice_180) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
            (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v1)))
-- Relation.Binary.Lattice.Bundles.Lattice._.x≤x∨y
d_x'8804'x'8744'y_446 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8804'x'8744'y_446 :: () -> () -> () -> T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8804'x'8744'y_446 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3 = T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_446 T_Lattice_386
v3
du_x'8804'x'8744'y_446 ::
  T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_446 :: T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_446 T_Lattice_386
v0
  = let v1 :: T_IsLattice_340
v1 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> T_Lattice_386
forall a b. a -> b
coe T_Lattice_386
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8804'x'8744'y_38
         ((T_IsLattice_340 -> T_IsJoinSemilattice_22) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
            (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v1)))
-- Relation.Binary.Lattice.Bundles.Lattice._.y≤x∨y
d_y'8804'x'8744'y_448 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
d_y'8804'x'8744'y_448 :: () -> () -> () -> T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
d_y'8804'x'8744'y_448 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3 = T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_448 T_Lattice_386
v3
du_y'8804'x'8744'y_448 ::
  T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_448 :: T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_448 T_Lattice_386
v0
  = let v1 :: T_IsLattice_340
v1 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> T_Lattice_386
forall a b. a -> b
coe T_Lattice_386
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_y'8804'x'8744'y_50
         ((T_IsLattice_340 -> T_IsJoinSemilattice_22) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
            (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v1)))
-- Relation.Binary.Lattice.Bundles.Lattice._.∧-greatest
d_'8743''45'greatest_450 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8743''45'greatest_450 :: ()
-> ()
-> ()
-> T_Lattice_386
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8743''45'greatest_450 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3
  = T_Lattice_386
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_450 T_Lattice_386
v3
du_'8743''45'greatest_450 ::
  T_Lattice_386 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_450 :: T_Lattice_386
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_450 T_Lattice_386
v0
  = let v1 :: T_IsLattice_340
v1 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> T_Lattice_386
forall a b. a -> b
coe T_Lattice_386
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsMeetSemilattice_180
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsMeetSemilattice_180
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_'8743''45'greatest_222
         ((T_IsLattice_340 -> T_IsMeetSemilattice_180) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
            (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v1)))
-- Relation.Binary.Lattice.Bundles.Lattice._.∨-least
d_'8744''45'least_452 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8744''45'least_452 :: ()
-> ()
-> ()
-> T_Lattice_386
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8744''45'least_452 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3 = T_Lattice_386
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_452 T_Lattice_386
v3
du_'8744''45'least_452 ::
  T_Lattice_386 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_452 :: T_Lattice_386
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_452 T_Lattice_386
v0
  = let v1 :: T_IsLattice_340
v1 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> T_Lattice_386
forall a b. a -> b
coe T_Lattice_386
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsJoinSemilattice_22
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsJoinSemilattice_22
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_'8744''45'least_64
         ((T_IsLattice_340 -> T_IsJoinSemilattice_22) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
            (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v1)))
-- Relation.Binary.Lattice.Bundles.Lattice._.∼-resp-≈
d_'8764''45'resp'45''8776'_454 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8764''45'resp'45''8776'_454 :: () -> () -> () -> T_Lattice_386 -> T_Σ_14
d_'8764''45'resp'45''8776'_454 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3
  = T_Lattice_386 -> T_Σ_14
du_'8764''45'resp'45''8776'_454 T_Lattice_386
v3
du_'8764''45'resp'45''8776'_454 ::
  T_Lattice_386 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8764''45'resp'45''8776'_454 :: T_Lattice_386 -> T_Σ_14
du_'8764''45'resp'45''8776'_454 T_Lattice_386
v0
  = let v1 :: T_IsLattice_340
v1 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> T_Lattice_386
forall a b. a -> b
coe T_Lattice_386
v0) in
    AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                 (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70 -> T_Σ_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70 -> T_Σ_14
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'45''8776'_118
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.Lattice._.∼-respʳ-≈
d_'8764''45'resp'691''45''8776'_456 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8764''45'resp'691''45''8776'_456 :: ()
-> ()
-> ()
-> T_Lattice_386
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8764''45'resp'691''45''8776'_456 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3
  = T_Lattice_386
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_456 T_Lattice_386
v3
du_'8764''45'resp'691''45''8776'_456 ::
  T_Lattice_386 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_456 :: T_Lattice_386
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_456 T_Lattice_386
v0
  = let v1 :: T_IsLattice_340
v1 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> T_Lattice_386
forall a b. a -> b
coe T_Lattice_386
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                 (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'691''45''8776'_116
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.Lattice._.∼-respˡ-≈
d_'8764''45'resp'737''45''8776'_458 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8764''45'resp'737''45''8776'_458 :: ()
-> ()
-> ()
-> T_Lattice_386
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8764''45'resp'737''45''8776'_458 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3
  = T_Lattice_386
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_458 T_Lattice_386
v3
du_'8764''45'resp'737''45''8776'_458 ::
  T_Lattice_386 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_458 :: T_Lattice_386
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_458 T_Lattice_386
v0
  = let v1 :: T_IsLattice_340
v1 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> T_Lattice_386
forall a b. a -> b
coe T_Lattice_386
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                 (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'737''45''8776'_114
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.Lattice._.≲-resp-≈
d_'8818''45'resp'45''8776'_460 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8818''45'resp'45''8776'_460 :: () -> () -> () -> T_Lattice_386 -> T_Σ_14
d_'8818''45'resp'45''8776'_460 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3
  = T_Lattice_386 -> T_Σ_14
du_'8818''45'resp'45''8776'_460 T_Lattice_386
v3
du_'8818''45'resp'45''8776'_460 ::
  T_Lattice_386 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8818''45'resp'45''8776'_460 :: T_Lattice_386 -> T_Σ_14
du_'8818''45'resp'45''8776'_460 T_Lattice_386
v0
  = let v1 :: T_IsLattice_340
v1 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> T_Lattice_386
forall a b. a -> b
coe T_Lattice_386
v0) in
    AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                 (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70 -> T_Σ_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70 -> T_Σ_14
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'45''8776'_112
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.Lattice._.≲-respʳ-≈
d_'8818''45'resp'691''45''8776'_462 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8818''45'resp'691''45''8776'_462 :: ()
-> ()
-> ()
-> T_Lattice_386
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8818''45'resp'691''45''8776'_462 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3
  = T_Lattice_386
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_462 T_Lattice_386
v3
du_'8818''45'resp'691''45''8776'_462 ::
  T_Lattice_386 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_462 :: T_Lattice_386
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_462 T_Lattice_386
v0
  = let v1 :: T_IsLattice_340
v1 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> T_Lattice_386
forall a b. a -> b
coe T_Lattice_386
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                 (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'691''45''8776'_106
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.Lattice._.≲-respˡ-≈
d_'8818''45'resp'737''45''8776'_464 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8818''45'resp'737''45''8776'_464 :: ()
-> ()
-> ()
-> T_Lattice_386
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8818''45'resp'737''45''8776'_464 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3
  = T_Lattice_386
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_464 T_Lattice_386
v3
du_'8818''45'resp'737''45''8776'_464 ::
  T_Lattice_386 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_464 :: T_Lattice_386
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_464 T_Lattice_386
v0
  = let v1 :: T_IsLattice_340
v1 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> T_Lattice_386
forall a b. a -> b
coe T_Lattice_386
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                 (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'737''45''8776'_100
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v2))))
-- Relation.Binary.Lattice.Bundles.Lattice._.Eq.isPartialEquivalence
d_isPartialEquivalence_468 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialEquivalence_16
d_isPartialEquivalence_468 :: () -> () -> () -> T_Lattice_386 -> T_IsPartialEquivalence_16
d_isPartialEquivalence_468 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3
  = T_Lattice_386 -> T_IsPartialEquivalence_16
du_isPartialEquivalence_468 T_Lattice_386
v3
du_isPartialEquivalence_468 ::
  T_Lattice_386 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialEquivalence_16
du_isPartialEquivalence_468 :: T_Lattice_386 -> T_IsPartialEquivalence_16
du_isPartialEquivalence_468 T_Lattice_386
v0
  = let v1 :: T_IsLattice_340
v1 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> T_Lattice_386
forall a b. a -> b
coe T_Lattice_386
v0) in
    AgdaAny -> T_IsPartialEquivalence_16
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                 (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPreorder_70
v3
                = T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                    (T_IsPartialOrder_174 -> T_IsPartialOrder_174
forall a b. a -> b
coe T_IsPartialOrder_174
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsEquivalence_26 -> T_IsPartialEquivalence_16)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsEquivalence_26 -> T_IsPartialEquivalence_16
MAlonzo.Code.Relation.Binary.Structures.du_isPartialEquivalence_42
               ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                  (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v3)))))
-- Relation.Binary.Lattice.Bundles.Lattice._.Eq.refl
d_refl_470 :: T_Lattice_386 -> AgdaAny -> AgdaAny
d_refl_470 :: T_Lattice_386 -> AgdaAny -> AgdaAny
d_refl_470 T_Lattice_386
v0
  = (T_IsEquivalence_26 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
               ((T_Lattice_386 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> AgdaAny
forall a b. a -> b
coe T_Lattice_386
v0)))))
-- Relation.Binary.Lattice.Bundles.Lattice._.Eq.reflexive
d_reflexive_472 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 ->
  AgdaAny ->
  AgdaAny ->
  MAlonzo.Code.Agda.Builtin.Equality.T__'8801'__12 -> AgdaAny
d_reflexive_472 :: ()
-> ()
-> ()
-> T_Lattice_386
-> AgdaAny
-> AgdaAny
-> T__'8801'__12
-> AgdaAny
d_reflexive_472 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3 = T_Lattice_386 -> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
du_reflexive_472 T_Lattice_386
v3
du_reflexive_472 ::
  T_Lattice_386 ->
  AgdaAny ->
  AgdaAny ->
  MAlonzo.Code.Agda.Builtin.Equality.T__'8801'__12 -> AgdaAny
du_reflexive_472 :: T_Lattice_386 -> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
du_reflexive_472 T_Lattice_386
v0
  = let v1 :: T_IsLattice_340
v1 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> T_Lattice_386
forall a b. a -> b
coe T_Lattice_386
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsPartialOrder_174
v2
             = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                 (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPreorder_70
v3
                = T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                    (T_IsPartialOrder_174 -> T_IsPartialOrder_174
forall a b. a -> b
coe T_IsPartialOrder_174
v2) in
          (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny
forall a b. a -> b
coe
            (\ AgdaAny
v4 AgdaAny
v5 AgdaAny
v6 ->
               (T_IsEquivalence_26 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                 T_IsEquivalence_26 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_reflexive_40
                 ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                    T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                    (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v3))
                 AgdaAny
v4)))
-- Relation.Binary.Lattice.Bundles.Lattice._.Eq.sym
d_sym_474 ::
  T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_sym_474 :: T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_sym_474 T_Lattice_386
v0
  = (T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
               ((T_Lattice_386 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> AgdaAny
forall a b. a -> b
coe T_Lattice_386
v0)))))
-- Relation.Binary.Lattice.Bundles.Lattice._.Eq.trans
d_trans_476 ::
  T_Lattice_386 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_476 :: T_Lattice_386
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_476 T_Lattice_386
v0
  = (T_IsEquivalence_26
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_38
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
               ((T_Lattice_386 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> AgdaAny
forall a b. a -> b
coe T_Lattice_386
v0)))))
-- Relation.Binary.Lattice.Bundles.Lattice.setoid
d_setoid_478 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 -> MAlonzo.Code.Relation.Binary.Bundles.T_Setoid_44
d_setoid_478 :: () -> () -> () -> T_Lattice_386 -> T_Setoid_44
d_setoid_478 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3 = T_Lattice_386 -> T_Setoid_44
du_setoid_478 T_Lattice_386
v3
du_setoid_478 ::
  T_Lattice_386 -> MAlonzo.Code.Relation.Binary.Bundles.T_Setoid_44
du_setoid_478 :: T_Lattice_386 -> T_Setoid_44
du_setoid_478 T_Lattice_386
v0
  = (T_IsEquivalence_26 -> T_Setoid_44)
-> T_IsEquivalence_26 -> T_Setoid_44
forall a b. a -> b
coe
      T_IsEquivalence_26 -> T_Setoid_44
MAlonzo.Code.Relation.Binary.Bundles.C_Setoid'46'constructor_733
      (T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70)
-> AgdaAny -> T_IsPreorder_70
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
               ((T_Lattice_386 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> AgdaAny
forall a b. a -> b
coe T_Lattice_386
v0)))))
-- Relation.Binary.Lattice.Bundles.Lattice.joinSemilattice
d_joinSemilattice_480 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 -> T_JoinSemilattice_14
d_joinSemilattice_480 :: () -> () -> () -> T_Lattice_386 -> T_JoinSemilattice_14
d_joinSemilattice_480 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3 = T_Lattice_386 -> T_JoinSemilattice_14
du_joinSemilattice_480 T_Lattice_386
v3
du_joinSemilattice_480 :: T_Lattice_386 -> T_JoinSemilattice_14
du_joinSemilattice_480 :: T_Lattice_386 -> T_JoinSemilattice_14
du_joinSemilattice_480 T_Lattice_386
v0
  = ((AgdaAny -> AgdaAny -> AgdaAny)
 -> T_IsJoinSemilattice_22 -> T_JoinSemilattice_14)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> T_JoinSemilattice_14
forall a b. a -> b
coe
      (AgdaAny -> AgdaAny -> AgdaAny)
-> T_IsJoinSemilattice_22 -> T_JoinSemilattice_14
C_JoinSemilattice'46'constructor_371 (T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__412 (T_Lattice_386 -> T_Lattice_386
forall a b. a -> b
coe T_Lattice_386
v0))
      ((T_IsLattice_340 -> T_IsJoinSemilattice_22) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
         ((T_Lattice_386 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> AgdaAny
forall a b. a -> b
coe T_Lattice_386
v0)))
-- Relation.Binary.Lattice.Bundles.Lattice.meetSemilattice
d_meetSemilattice_482 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 -> T_MeetSemilattice_200
d_meetSemilattice_482 :: () -> () -> () -> T_Lattice_386 -> T_MeetSemilattice_200
d_meetSemilattice_482 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3 = T_Lattice_386 -> T_MeetSemilattice_200
du_meetSemilattice_482 T_Lattice_386
v3
du_meetSemilattice_482 :: T_Lattice_386 -> T_MeetSemilattice_200
du_meetSemilattice_482 :: T_Lattice_386 -> T_MeetSemilattice_200
du_meetSemilattice_482 T_Lattice_386
v0
  = ((AgdaAny -> AgdaAny -> AgdaAny)
 -> T_IsMeetSemilattice_180 -> T_MeetSemilattice_200)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> T_MeetSemilattice_200
forall a b. a -> b
coe
      (AgdaAny -> AgdaAny -> AgdaAny)
-> T_IsMeetSemilattice_180 -> T_MeetSemilattice_200
C_MeetSemilattice'46'constructor_4629 (T_Lattice_386 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__414 (T_Lattice_386 -> T_Lattice_386
forall a b. a -> b
coe T_Lattice_386
v0))
      ((T_IsLattice_340 -> T_IsMeetSemilattice_180) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
         ((T_Lattice_386 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (T_Lattice_386 -> AgdaAny
forall a b. a -> b
coe T_Lattice_386
v0)))
-- Relation.Binary.Lattice.Bundles.Lattice._.poset
d_poset_486 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 -> MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314
d_poset_486 :: () -> () -> () -> T_Lattice_386 -> T_Poset_314
d_poset_486 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3 = T_Lattice_386 -> T_Poset_314
du_poset_486 T_Lattice_386
v3
du_poset_486 ::
  T_Lattice_386 -> MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314
du_poset_486 :: T_Lattice_386 -> T_Poset_314
du_poset_486 T_Lattice_386
v0
  = (T_JoinSemilattice_14 -> T_Poset_314) -> AgdaAny -> T_Poset_314
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_Poset_314
du_poset_90 ((T_Lattice_386 -> T_JoinSemilattice_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_JoinSemilattice_14
du_joinSemilattice_480 (T_Lattice_386 -> AgdaAny
forall a b. a -> b
coe T_Lattice_386
v0))
-- Relation.Binary.Lattice.Bundles.Lattice._.preorder
d_preorder_488 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_Lattice_386 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132
d_preorder_488 :: () -> () -> () -> T_Lattice_386 -> T_Preorder_132
d_preorder_488 ~()
v0 ~()
v1 ~()
v2 T_Lattice_386
v3 = T_Lattice_386 -> T_Preorder_132
du_preorder_488 T_Lattice_386
v3
du_preorder_488 ::
  T_Lattice_386 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132
du_preorder_488 :: T_Lattice_386 -> T_Preorder_132
du_preorder_488 T_Lattice_386
v0
  = let v1 :: t
v1 = (T_Lattice_386 -> T_JoinSemilattice_14) -> AgdaAny -> t
forall a b. a -> b
coe T_Lattice_386 -> T_JoinSemilattice_14
du_joinSemilattice_480 (T_Lattice_386 -> AgdaAny
forall a b. a -> b
coe T_Lattice_386
v0) in
    AgdaAny -> T_Preorder_132
forall a b. a -> b
coe
      ((T_Poset_314 -> T_Preorder_132) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_Poset_314 -> T_Preorder_132
MAlonzo.Code.Relation.Binary.Bundles.du_preorder_344
         ((T_JoinSemilattice_14 -> T_Poset_314) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_Poset_314
du_poset_90 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice
d_DistributiveLattice_496 :: p -> p -> p -> ()
d_DistributiveLattice_496 p
a0 p
a1 p
a2 = ()
data T_DistributiveLattice_496
  = C_DistributiveLattice'46'constructor_11867 (AgdaAny ->
                                                AgdaAny -> AgdaAny)
                                               (AgdaAny -> AgdaAny -> AgdaAny)
                                               MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsDistributiveLattice_420
-- Relation.Binary.Lattice.Bundles.DistributiveLattice.Carrier
d_Carrier_516 :: T_DistributiveLattice_496 -> ()
d_Carrier_516 :: T_DistributiveLattice_496 -> ()
d_Carrier_516 = T_DistributiveLattice_496 -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._≈_
d__'8776'__518 ::
  T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> ()
d__'8776'__518 :: T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> ()
d__'8776'__518 = T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._≤_
d__'8804'__520 ::
  T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> ()
d__'8804'__520 :: T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> ()
d__'8804'__520 = T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._∨_
d__'8744'__522 ::
  T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__522 :: T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__522 T_DistributiveLattice_496
v0
  = case T_DistributiveLattice_496 -> T_DistributiveLattice_496
forall a b. a -> b
coe T_DistributiveLattice_496
v0 of
      C_DistributiveLattice'46'constructor_11867 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 T_IsDistributiveLattice_420
v6 -> (AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny
v4
      T_DistributiveLattice_496
_ -> AgdaAny -> AgdaAny -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._∧_
d__'8743'__524 ::
  T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__524 :: T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__524 T_DistributiveLattice_496
v0
  = case T_DistributiveLattice_496 -> T_DistributiveLattice_496
forall a b. a -> b
coe T_DistributiveLattice_496
v0 of
      C_DistributiveLattice'46'constructor_11867 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 T_IsDistributiveLattice_420
v6 -> (AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny
v5
      T_DistributiveLattice_496
_ -> AgdaAny -> AgdaAny -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.DistributiveLattice.isDistributiveLattice
d_isDistributiveLattice_526 ::
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsDistributiveLattice_420
d_isDistributiveLattice_526 :: T_DistributiveLattice_496 -> T_IsDistributiveLattice_420
d_isDistributiveLattice_526 T_DistributiveLattice_496
v0
  = case T_DistributiveLattice_496 -> T_DistributiveLattice_496
forall a b. a -> b
coe T_DistributiveLattice_496
v0 of
      C_DistributiveLattice'46'constructor_11867 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 T_IsDistributiveLattice_420
v6 -> T_IsDistributiveLattice_420 -> T_IsDistributiveLattice_420
forall a b. a -> b
coe T_IsDistributiveLattice_420
v6
      T_DistributiveLattice_496
_ -> T_IsDistributiveLattice_420
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.∧-distribˡ-∨
d_'8743''45'distrib'737''45''8744'_530 ::
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8743''45'distrib'737''45''8744'_530 :: T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8743''45'distrib'737''45''8744'_530 T_DistributiveLattice_496
v0
  = (T_IsDistributiveLattice_420
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsDistributiveLattice_420
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_'8743''45'distrib'737''45''8744'_432
      ((T_DistributiveLattice_496 -> T_IsDistributiveLattice_420)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_IsDistributiveLattice_420
d_isDistributiveLattice_526 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice.lattice
d_lattice_536 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 -> T_Lattice_386
d_lattice_536 :: () -> () -> () -> T_DistributiveLattice_496 -> T_Lattice_386
d_lattice_536 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 T_DistributiveLattice_496
v3
du_lattice_536 :: T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 :: T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 T_DistributiveLattice_496
v0
  = ((AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny)
 -> T_IsLattice_340
 -> T_Lattice_386)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> T_IsLattice_340
-> T_Lattice_386
forall a b. a -> b
coe
      (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> T_IsLattice_340
-> T_Lattice_386
C_Lattice'46'constructor_8977 (T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__522 (T_DistributiveLattice_496 -> T_DistributiveLattice_496
forall a b. a -> b
coe T_DistributiveLattice_496
v0))
      (T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__524 (T_DistributiveLattice_496 -> T_DistributiveLattice_496
forall a b. a -> b
coe T_DistributiveLattice_496
v0))
      (T_IsDistributiveLattice_420 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_430
         ((T_DistributiveLattice_496 -> T_IsDistributiveLattice_420)
-> AgdaAny -> T_IsDistributiveLattice_420
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_IsDistributiveLattice_420
d_isDistributiveLattice_526 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0)))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.antisym
d_antisym_540 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_antisym_540 :: ()
-> ()
-> ()
-> T_DistributiveLattice_496
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_antisym_540 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_antisym_540 T_DistributiveLattice_496
v3
du_antisym_540 ::
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_antisym_540 :: T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_antisym_540 T_DistributiveLattice_496
v0
  = (T_IsPartialOrder_174
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsPartialOrder_174
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_antisym_184
      ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
         ((T_IsDistributiveLattice_420 -> T_IsLattice_340)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsDistributiveLattice_420 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_430
            ((T_DistributiveLattice_496 -> T_IsDistributiveLattice_420)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_IsDistributiveLattice_420
d_isDistributiveLattice_526 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.infimum
d_infimum_542 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_infimum_542 :: ()
-> ()
-> ()
-> T_DistributiveLattice_496
-> AgdaAny
-> AgdaAny
-> T_Σ_14
d_infimum_542 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> T_Σ_14
du_infimum_542 T_DistributiveLattice_496
v3
du_infimum_542 ::
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_infimum_542 :: T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> T_Σ_14
du_infimum_542 T_DistributiveLattice_496
v0
  = (T_IsLattice_340 -> AgdaAny -> AgdaAny -> T_Σ_14)
-> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      T_IsLattice_340 -> AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_infimum_356
      ((T_IsDistributiveLattice_420 -> T_IsLattice_340)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsDistributiveLattice_420 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_430
         ((T_DistributiveLattice_496 -> T_IsDistributiveLattice_420)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_IsDistributiveLattice_420
d_isDistributiveLattice_526 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0)))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.isEquivalence
d_isEquivalence_544 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsEquivalence_26
d_isEquivalence_544 :: () -> () -> () -> T_DistributiveLattice_496 -> T_IsEquivalence_26
d_isEquivalence_544 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496 -> T_IsEquivalence_26
du_isEquivalence_544 T_DistributiveLattice_496
v3
du_isEquivalence_544 ::
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsEquivalence_26
du_isEquivalence_544 :: T_DistributiveLattice_496 -> T_IsEquivalence_26
du_isEquivalence_544 T_DistributiveLattice_496
v0
  = (T_IsPreorder_70 -> T_IsEquivalence_26)
-> AgdaAny -> T_IsEquivalence_26
forall a b. a -> b
coe
      T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
            ((T_IsDistributiveLattice_420 -> T_IsLattice_340)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsDistributiveLattice_420 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_430
               ((T_DistributiveLattice_496 -> T_IsDistributiveLattice_420)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_IsDistributiveLattice_420
d_isDistributiveLattice_526 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0)))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.isJoinSemilattice
d_isJoinSemilattice_546 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsJoinSemilattice_22
d_isJoinSemilattice_546 :: ()
-> () -> () -> T_DistributiveLattice_496 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_546 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3
  = T_DistributiveLattice_496 -> T_IsJoinSemilattice_22
du_isJoinSemilattice_546 T_DistributiveLattice_496
v3
du_isJoinSemilattice_546 ::
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsJoinSemilattice_22
du_isJoinSemilattice_546 :: T_DistributiveLattice_496 -> T_IsJoinSemilattice_22
du_isJoinSemilattice_546 T_DistributiveLattice_496
v0
  = let v1 :: t
v1 = (T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0) in
    AgdaAny -> T_IsJoinSemilattice_22
forall a b. a -> b
coe
      ((T_IsLattice_340 -> T_IsJoinSemilattice_22) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
         ((T_Lattice_386 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.isLattice
d_isLattice_548 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsLattice_340
d_isLattice_548 :: () -> () -> () -> T_DistributiveLattice_496 -> T_IsLattice_340
d_isLattice_548 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496 -> T_IsLattice_340
du_isLattice_548 T_DistributiveLattice_496
v3
du_isLattice_548 ::
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsLattice_340
du_isLattice_548 :: T_DistributiveLattice_496 -> T_IsLattice_340
du_isLattice_548 T_DistributiveLattice_496
v0
  = (T_IsDistributiveLattice_420 -> T_IsLattice_340)
-> AgdaAny -> T_IsLattice_340
forall a b. a -> b
coe
      T_IsDistributiveLattice_420 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_430
      ((T_DistributiveLattice_496 -> T_IsDistributiveLattice_420)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_IsDistributiveLattice_420
d_isDistributiveLattice_526 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.isMeetSemilattice
d_isMeetSemilattice_550 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsMeetSemilattice_180
d_isMeetSemilattice_550 :: ()
-> () -> () -> T_DistributiveLattice_496 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_550 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3
  = T_DistributiveLattice_496 -> T_IsMeetSemilattice_180
du_isMeetSemilattice_550 T_DistributiveLattice_496
v3
du_isMeetSemilattice_550 ::
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsMeetSemilattice_180
du_isMeetSemilattice_550 :: T_DistributiveLattice_496 -> T_IsMeetSemilattice_180
du_isMeetSemilattice_550 T_DistributiveLattice_496
v0
  = let v1 :: t
v1 = (T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0) in
    AgdaAny -> T_IsMeetSemilattice_180
forall a b. a -> b
coe
      ((T_IsLattice_340 -> T_IsMeetSemilattice_180) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
         ((T_Lattice_386 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.isPartialOrder
d_isPartialOrder_552 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialOrder_174
d_isPartialOrder_552 :: () -> () -> () -> T_DistributiveLattice_496 -> T_IsPartialOrder_174
d_isPartialOrder_552 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496 -> T_IsPartialOrder_174
du_isPartialOrder_552 T_DistributiveLattice_496
v3
du_isPartialOrder_552 ::
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialOrder_174
du_isPartialOrder_552 :: T_DistributiveLattice_496 -> T_IsPartialOrder_174
du_isPartialOrder_552 T_DistributiveLattice_496
v0
  = (T_IsLattice_340 -> T_IsPartialOrder_174)
-> AgdaAny -> T_IsPartialOrder_174
forall a b. a -> b
coe
      T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
      ((T_IsDistributiveLattice_420 -> T_IsLattice_340)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsDistributiveLattice_420 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_430
         ((T_DistributiveLattice_496 -> T_IsDistributiveLattice_420)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_IsDistributiveLattice_420
d_isDistributiveLattice_526 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0)))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.isPreorder
d_isPreorder_554 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPreorder_70
d_isPreorder_554 :: () -> () -> () -> T_DistributiveLattice_496 -> T_IsPreorder_70
d_isPreorder_554 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496 -> T_IsPreorder_70
du_isPreorder_554 T_DistributiveLattice_496
v3
du_isPreorder_554 ::
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPreorder_70
du_isPreorder_554 :: T_DistributiveLattice_496 -> T_IsPreorder_70
du_isPreorder_554 T_DistributiveLattice_496
v0
  = (T_IsPartialOrder_174 -> T_IsPreorder_70)
-> AgdaAny -> T_IsPreorder_70
forall a b. a -> b
coe
      T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
      ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
         ((T_IsDistributiveLattice_420 -> T_IsLattice_340)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsDistributiveLattice_420 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_430
            ((T_DistributiveLattice_496 -> T_IsDistributiveLattice_420)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_IsDistributiveLattice_420
d_isDistributiveLattice_526 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.joinSemilattice
d_joinSemilattice_556 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 -> T_JoinSemilattice_14
d_joinSemilattice_556 :: () -> () -> () -> T_DistributiveLattice_496 -> T_JoinSemilattice_14
d_joinSemilattice_556 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496 -> T_JoinSemilattice_14
du_joinSemilattice_556 T_DistributiveLattice_496
v3
du_joinSemilattice_556 ::
  T_DistributiveLattice_496 -> T_JoinSemilattice_14
du_joinSemilattice_556 :: T_DistributiveLattice_496 -> T_JoinSemilattice_14
du_joinSemilattice_556 T_DistributiveLattice_496
v0
  = (T_Lattice_386 -> T_JoinSemilattice_14)
-> AgdaAny -> T_JoinSemilattice_14
forall a b. a -> b
coe T_Lattice_386 -> T_JoinSemilattice_14
du_joinSemilattice_480 ((T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.meetSemilattice
d_meetSemilattice_558 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 -> T_MeetSemilattice_200
d_meetSemilattice_558 :: ()
-> () -> () -> T_DistributiveLattice_496 -> T_MeetSemilattice_200
d_meetSemilattice_558 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496 -> T_MeetSemilattice_200
du_meetSemilattice_558 T_DistributiveLattice_496
v3
du_meetSemilattice_558 ::
  T_DistributiveLattice_496 -> T_MeetSemilattice_200
du_meetSemilattice_558 :: T_DistributiveLattice_496 -> T_MeetSemilattice_200
du_meetSemilattice_558 T_DistributiveLattice_496
v0
  = (T_Lattice_386 -> T_MeetSemilattice_200)
-> AgdaAny -> T_MeetSemilattice_200
forall a b. a -> b
coe T_Lattice_386 -> T_MeetSemilattice_200
du_meetSemilattice_482 ((T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.poset
d_poset_560 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314
d_poset_560 :: () -> () -> () -> T_DistributiveLattice_496 -> T_Poset_314
d_poset_560 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496 -> T_Poset_314
du_poset_560 T_DistributiveLattice_496
v3
du_poset_560 ::
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314
du_poset_560 :: T_DistributiveLattice_496 -> T_Poset_314
du_poset_560 T_DistributiveLattice_496
v0
  = let v1 :: t
v1 = (T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0) in
    AgdaAny -> T_Poset_314
forall a b. a -> b
coe ((T_JoinSemilattice_14 -> T_Poset_314) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_Poset_314
du_poset_90 ((T_Lattice_386 -> T_JoinSemilattice_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_JoinSemilattice_14
du_joinSemilattice_480 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.preorder
d_preorder_562 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132
d_preorder_562 :: () -> () -> () -> T_DistributiveLattice_496 -> T_Preorder_132
d_preorder_562 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496 -> T_Preorder_132
du_preorder_562 T_DistributiveLattice_496
v3
du_preorder_562 ::
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132
du_preorder_562 :: T_DistributiveLattice_496 -> T_Preorder_132
du_preorder_562 T_DistributiveLattice_496
v0
  = let v1 :: t
v1 = (T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0) in
    AgdaAny -> T_Preorder_132
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_Lattice_386 -> T_JoinSemilattice_14) -> AgdaAny -> t
forall a b. a -> b
coe T_Lattice_386 -> T_JoinSemilattice_14
du_joinSemilattice_480 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_Poset_314 -> T_Preorder_132) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_Poset_314 -> T_Preorder_132
MAlonzo.Code.Relation.Binary.Bundles.du_preorder_344
            ((T_JoinSemilattice_14 -> T_Poset_314) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_Poset_314
du_poset_90 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v2))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.refl
d_refl_564 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 -> AgdaAny -> AgdaAny
d_refl_564 :: () -> () -> () -> T_DistributiveLattice_496 -> AgdaAny -> AgdaAny
d_refl_564 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496 -> AgdaAny -> AgdaAny
du_refl_564 T_DistributiveLattice_496
v3
du_refl_564 :: T_DistributiveLattice_496 -> AgdaAny -> AgdaAny
du_refl_564 :: T_DistributiveLattice_496 -> AgdaAny -> AgdaAny
du_refl_564 T_DistributiveLattice_496
v0
  = let v1 :: t
v1 = (T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0) in
    AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (AgdaAny -> T_Lattice_386
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                    (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70 -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_refl_98
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.reflexive
d_reflexive_566 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_reflexive_566 :: ()
-> ()
-> ()
-> T_DistributiveLattice_496
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_reflexive_566 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_reflexive_566 T_DistributiveLattice_496
v3
du_reflexive_566 ::
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_reflexive_566 :: T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_reflexive_566 T_DistributiveLattice_496
v0
  = (T_IsPreorder_70 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsPreorder_70 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_reflexive_82
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
            ((T_IsDistributiveLattice_420 -> T_IsLattice_340)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsDistributiveLattice_420 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_430
               ((T_DistributiveLattice_496 -> T_IsDistributiveLattice_420)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_IsDistributiveLattice_420
d_isDistributiveLattice_526 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0)))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.setoid
d_setoid_568 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Setoid_44
d_setoid_568 :: () -> () -> () -> T_DistributiveLattice_496 -> T_Setoid_44
d_setoid_568 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496 -> T_Setoid_44
du_setoid_568 T_DistributiveLattice_496
v3
du_setoid_568 ::
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Setoid_44
du_setoid_568 :: T_DistributiveLattice_496 -> T_Setoid_44
du_setoid_568 T_DistributiveLattice_496
v0 = (T_Lattice_386 -> T_Setoid_44) -> AgdaAny -> T_Setoid_44
forall a b. a -> b
coe T_Lattice_386 -> T_Setoid_44
du_setoid_478 ((T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.supremum
d_supremum_570 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_supremum_570 :: ()
-> ()
-> ()
-> T_DistributiveLattice_496
-> AgdaAny
-> AgdaAny
-> T_Σ_14
d_supremum_570 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> T_Σ_14
du_supremum_570 T_DistributiveLattice_496
v3
du_supremum_570 ::
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_supremum_570 :: T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> T_Σ_14
du_supremum_570 T_DistributiveLattice_496
v0
  = (T_IsLattice_340 -> AgdaAny -> AgdaAny -> T_Σ_14)
-> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      T_IsLattice_340 -> AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_supremum_354
      ((T_IsDistributiveLattice_420 -> T_IsLattice_340)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsDistributiveLattice_420 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_430
         ((T_DistributiveLattice_496 -> T_IsDistributiveLattice_420)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_IsDistributiveLattice_420
d_isDistributiveLattice_526 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0)))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.trans
d_trans_572 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_572 :: ()
-> ()
-> ()
-> T_DistributiveLattice_496
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_trans_572 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_572 T_DistributiveLattice_496
v3
du_trans_572 ::
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_572 :: T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_572 T_DistributiveLattice_496
v0
  = (T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_84
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
            ((T_IsDistributiveLattice_420 -> T_IsLattice_340)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsDistributiveLattice_420 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_430
               ((T_DistributiveLattice_496 -> T_IsDistributiveLattice_420)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_IsDistributiveLattice_420
d_isDistributiveLattice_526 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0)))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.x∧y≤x
d_x'8743'y'8804'x_574 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8743'y'8804'x_574 :: ()
-> ()
-> ()
-> T_DistributiveLattice_496
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8743'y'8804'x_574 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_574 T_DistributiveLattice_496
v3
du_x'8743'y'8804'x_574 ::
  T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_574 :: T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_574 T_DistributiveLattice_496
v0
  = let v1 :: t
v1 = (T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (AgdaAny -> T_Lattice_386
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8743'y'8804'x_196
            ((T_IsLattice_340 -> T_IsMeetSemilattice_180) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
               (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v2))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.x∧y≤y
d_x'8743'y'8804'y_576 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8743'y'8804'y_576 :: ()
-> ()
-> ()
-> T_DistributiveLattice_496
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8743'y'8804'y_576 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_576 T_DistributiveLattice_496
v3
du_x'8743'y'8804'y_576 ::
  T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_576 :: T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_576 T_DistributiveLattice_496
v0
  = let v1 :: t
v1 = (T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (AgdaAny -> T_Lattice_386
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8743'y'8804'y_208
            ((T_IsLattice_340 -> T_IsMeetSemilattice_180) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
               (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v2))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.x≤x∨y
d_x'8804'x'8744'y_578 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8804'x'8744'y_578 :: ()
-> ()
-> ()
-> T_DistributiveLattice_496
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8804'x'8744'y_578 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_578 T_DistributiveLattice_496
v3
du_x'8804'x'8744'y_578 ::
  T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_578 :: T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_578 T_DistributiveLattice_496
v0
  = let v1 :: t
v1 = (T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (AgdaAny -> T_Lattice_386
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8804'x'8744'y_38
            ((T_IsLattice_340 -> T_IsJoinSemilattice_22) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
               (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v2))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.y≤x∨y
d_y'8804'x'8744'y_580 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
d_y'8804'x'8744'y_580 :: ()
-> ()
-> ()
-> T_DistributiveLattice_496
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_y'8804'x'8744'y_580 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_580 T_DistributiveLattice_496
v3
du_y'8804'x'8744'y_580 ::
  T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_580 :: T_DistributiveLattice_496 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_580 T_DistributiveLattice_496
v0
  = let v1 :: t
v1 = (T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (AgdaAny -> T_Lattice_386
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_y'8804'x'8744'y_50
            ((T_IsLattice_340 -> T_IsJoinSemilattice_22) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
               (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v2))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.∧-greatest
d_'8743''45'greatest_582 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8743''45'greatest_582 :: ()
-> ()
-> ()
-> T_DistributiveLattice_496
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8743''45'greatest_582 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3
  = T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_582 T_DistributiveLattice_496
v3
du_'8743''45'greatest_582 ::
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_582 :: T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_582 T_DistributiveLattice_496
v0
  = let v1 :: t
v1 = (T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (AgdaAny -> T_Lattice_386
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsMeetSemilattice_180
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsMeetSemilattice_180
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_'8743''45'greatest_222
            ((T_IsLattice_340 -> T_IsMeetSemilattice_180) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
               (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v2))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.∨-least
d_'8744''45'least_584 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8744''45'least_584 :: ()
-> ()
-> ()
-> T_DistributiveLattice_496
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8744''45'least_584 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_584 T_DistributiveLattice_496
v3
du_'8744''45'least_584 ::
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_584 :: T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_584 T_DistributiveLattice_496
v0
  = let v1 :: t
v1 = (T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (AgdaAny -> T_Lattice_386
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsJoinSemilattice_22
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsJoinSemilattice_22
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_'8744''45'least_64
            ((T_IsLattice_340 -> T_IsJoinSemilattice_22) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
               (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v2))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.∼-resp-≈
d_'8764''45'resp'45''8776'_586 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8764''45'resp'45''8776'_586 :: () -> () -> () -> T_DistributiveLattice_496 -> T_Σ_14
d_'8764''45'resp'45''8776'_586 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3
  = T_DistributiveLattice_496 -> T_Σ_14
du_'8764''45'resp'45''8776'_586 T_DistributiveLattice_496
v3
du_'8764''45'resp'45''8776'_586 ::
  T_DistributiveLattice_496 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8764''45'resp'45''8776'_586 :: T_DistributiveLattice_496 -> T_Σ_14
du_'8764''45'resp'45''8776'_586 T_DistributiveLattice_496
v0
  = let v1 :: t
v1 = (T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0) in
    AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (AgdaAny -> T_Lattice_386
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                    (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70 -> T_Σ_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70 -> T_Σ_14
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'45''8776'_118
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.∼-respʳ-≈
d_'8764''45'resp'691''45''8776'_588 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8764''45'resp'691''45''8776'_588 :: ()
-> ()
-> ()
-> T_DistributiveLattice_496
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8764''45'resp'691''45''8776'_588 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3
  = T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_588 T_DistributiveLattice_496
v3
du_'8764''45'resp'691''45''8776'_588 ::
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_588 :: T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_588 T_DistributiveLattice_496
v0
  = let v1 :: t
v1 = (T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (AgdaAny -> T_Lattice_386
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                    (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'691''45''8776'_116
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.∼-respˡ-≈
d_'8764''45'resp'737''45''8776'_590 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8764''45'resp'737''45''8776'_590 :: ()
-> ()
-> ()
-> T_DistributiveLattice_496
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8764''45'resp'737''45''8776'_590 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3
  = T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_590 T_DistributiveLattice_496
v3
du_'8764''45'resp'737''45''8776'_590 ::
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_590 :: T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_590 T_DistributiveLattice_496
v0
  = let v1 :: t
v1 = (T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (AgdaAny -> T_Lattice_386
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                    (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'737''45''8776'_114
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.≲-resp-≈
d_'8818''45'resp'45''8776'_592 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8818''45'resp'45''8776'_592 :: () -> () -> () -> T_DistributiveLattice_496 -> T_Σ_14
d_'8818''45'resp'45''8776'_592 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3
  = T_DistributiveLattice_496 -> T_Σ_14
du_'8818''45'resp'45''8776'_592 T_DistributiveLattice_496
v3
du_'8818''45'resp'45''8776'_592 ::
  T_DistributiveLattice_496 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8818''45'resp'45''8776'_592 :: T_DistributiveLattice_496 -> T_Σ_14
du_'8818''45'resp'45''8776'_592 T_DistributiveLattice_496
v0
  = let v1 :: t
v1 = (T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0) in
    AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (AgdaAny -> T_Lattice_386
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                    (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70 -> T_Σ_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70 -> T_Σ_14
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'45''8776'_112
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.≲-respʳ-≈
d_'8818''45'resp'691''45''8776'_594 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8818''45'resp'691''45''8776'_594 :: ()
-> ()
-> ()
-> T_DistributiveLattice_496
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8818''45'resp'691''45''8776'_594 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3
  = T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_594 T_DistributiveLattice_496
v3
du_'8818''45'resp'691''45''8776'_594 ::
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_594 :: T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_594 T_DistributiveLattice_496
v0
  = let v1 :: t
v1 = (T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (AgdaAny -> T_Lattice_386
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                    (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'691''45''8776'_106
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.≲-respˡ-≈
d_'8818''45'resp'737''45''8776'_596 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8818''45'resp'737''45''8776'_596 :: ()
-> ()
-> ()
-> T_DistributiveLattice_496
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8818''45'resp'737''45''8776'_596 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3
  = T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_596 T_DistributiveLattice_496
v3
du_'8818''45'resp'737''45''8776'_596 ::
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_596 :: T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_596 T_DistributiveLattice_496
v0
  = let v1 :: t
v1 = (T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (AgdaAny -> T_Lattice_386
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                    (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'737''45''8776'_100
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.Eq.isPartialEquivalence
d_isPartialEquivalence_600 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialEquivalence_16
d_isPartialEquivalence_600 :: ()
-> ()
-> ()
-> T_DistributiveLattice_496
-> T_IsPartialEquivalence_16
d_isPartialEquivalence_600 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3
  = T_DistributiveLattice_496 -> T_IsPartialEquivalence_16
du_isPartialEquivalence_600 T_DistributiveLattice_496
v3
du_isPartialEquivalence_600 ::
  T_DistributiveLattice_496 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialEquivalence_16
du_isPartialEquivalence_600 :: T_DistributiveLattice_496 -> T_IsPartialEquivalence_16
du_isPartialEquivalence_600 T_DistributiveLattice_496
v0
  = let v1 :: t
v1 = (T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0) in
    AgdaAny -> T_IsPartialEquivalence_16
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (AgdaAny -> T_Lattice_386
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                    (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsPreorder_70
v4
                   = T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                       (T_IsPartialOrder_174 -> T_IsPartialOrder_174
forall a b. a -> b
coe T_IsPartialOrder_174
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               ((T_IsEquivalence_26 -> T_IsPartialEquivalence_16)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsEquivalence_26 -> T_IsPartialEquivalence_16
MAlonzo.Code.Relation.Binary.Structures.du_isPartialEquivalence_42
                  ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                     (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v4))))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.Eq.refl
d_refl_602 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 -> AgdaAny -> AgdaAny
d_refl_602 :: () -> () -> () -> T_DistributiveLattice_496 -> AgdaAny -> AgdaAny
d_refl_602 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496 -> AgdaAny -> AgdaAny
du_refl_602 T_DistributiveLattice_496
v3
du_refl_602 :: T_DistributiveLattice_496 -> AgdaAny -> AgdaAny
du_refl_602 :: T_DistributiveLattice_496 -> AgdaAny -> AgdaAny
du_refl_602 T_DistributiveLattice_496
v0
  = (T_IsEquivalence_26 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
               ((T_IsDistributiveLattice_420 -> T_IsLattice_340)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsDistributiveLattice_420 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_430
                  ((T_DistributiveLattice_496 -> T_IsDistributiveLattice_420)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_IsDistributiveLattice_420
d_isDistributiveLattice_526 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0))))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.Eq.reflexive
d_reflexive_604 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  AgdaAny ->
  AgdaAny ->
  MAlonzo.Code.Agda.Builtin.Equality.T__'8801'__12 -> AgdaAny
d_reflexive_604 :: ()
-> ()
-> ()
-> T_DistributiveLattice_496
-> AgdaAny
-> AgdaAny
-> T__'8801'__12
-> AgdaAny
d_reflexive_604 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
du_reflexive_604 T_DistributiveLattice_496
v3
du_reflexive_604 ::
  T_DistributiveLattice_496 ->
  AgdaAny ->
  AgdaAny ->
  MAlonzo.Code.Agda.Builtin.Equality.T__'8801'__12 -> AgdaAny
du_reflexive_604 :: T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
du_reflexive_604 T_DistributiveLattice_496
v0
  = let v1 :: t
v1 = (T_DistributiveLattice_496 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_Lattice_386
du_lattice_536 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2 = T_Lattice_386 -> T_IsLattice_340
d_isLattice_416 (AgdaAny -> T_Lattice_386
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                    (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsPreorder_70
v4
                   = T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                       (T_IsPartialOrder_174 -> T_IsPartialOrder_174
forall a b. a -> b
coe T_IsPartialOrder_174
v3) in
             (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny
forall a b. a -> b
coe
               (\ AgdaAny
v5 AgdaAny
v6 AgdaAny
v7 ->
                  (T_IsEquivalence_26 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                    T_IsEquivalence_26 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_reflexive_40
                    ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                       T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                       (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v4))
                    AgdaAny
v5))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.Eq.sym
d_sym_606 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_sym_606 :: ()
-> ()
-> ()
-> T_DistributiveLattice_496
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_sym_606 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_sym_606 T_DistributiveLattice_496
v3
du_sym_606 ::
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_sym_606 :: T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_sym_606 T_DistributiveLattice_496
v0
  = (T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
               ((T_IsDistributiveLattice_420 -> T_IsLattice_340)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsDistributiveLattice_420 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_430
                  ((T_DistributiveLattice_496 -> T_IsDistributiveLattice_420)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_IsDistributiveLattice_420
d_isDistributiveLattice_526 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0))))))
-- Relation.Binary.Lattice.Bundles.DistributiveLattice._.Eq.trans
d_trans_608 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_608 :: ()
-> ()
-> ()
-> T_DistributiveLattice_496
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_trans_608 ~()
v0 ~()
v1 ~()
v2 T_DistributiveLattice_496
v3 = T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_608 T_DistributiveLattice_496
v3
du_trans_608 ::
  T_DistributiveLattice_496 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_608 :: T_DistributiveLattice_496
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_608 T_DistributiveLattice_496
v0
  = (T_IsEquivalence_26
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_38
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
               ((T_IsDistributiveLattice_420 -> T_IsLattice_340)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsDistributiveLattice_420 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_430
                  ((T_DistributiveLattice_496 -> T_IsDistributiveLattice_420)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496 -> T_IsDistributiveLattice_420
d_isDistributiveLattice_526 (T_DistributiveLattice_496 -> AgdaAny
forall a b. a -> b
coe T_DistributiveLattice_496
v0))))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice
d_BoundedLattice_616 :: p -> p -> p -> ()
d_BoundedLattice_616 p
a0 p
a1 p
a2 = ()
data T_BoundedLattice_616
  = C_BoundedLattice'46'constructor_14911 (AgdaAny ->
                                           AgdaAny -> AgdaAny)
                                          (AgdaAny -> AgdaAny -> AgdaAny) AgdaAny AgdaAny
                                          MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedLattice_502
-- Relation.Binary.Lattice.Bundles.BoundedLattice.Carrier
d_Carrier_640 :: T_BoundedLattice_616 -> ()
d_Carrier_640 :: T_BoundedLattice_616 -> ()
d_Carrier_640 = T_BoundedLattice_616 -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.BoundedLattice._≈_
d__'8776'__642 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> ()
d__'8776'__642 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> ()
d__'8776'__642 = T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.BoundedLattice._≤_
d__'8804'__644 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> ()
d__'8804'__644 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> ()
d__'8804'__644 = T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.BoundedLattice._∨_
d__'8744'__646 ::
  T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__646 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__646 T_BoundedLattice_616
v0
  = case T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0 of
      C_BoundedLattice'46'constructor_14911 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny
v6 AgdaAny
v7 T_IsBoundedLattice_502
v8 -> (AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny
v4
      T_BoundedLattice_616
_ -> AgdaAny -> AgdaAny -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.BoundedLattice._∧_
d__'8743'__648 ::
  T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__648 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__648 T_BoundedLattice_616
v0
  = case T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0 of
      C_BoundedLattice'46'constructor_14911 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny
v6 AgdaAny
v7 T_IsBoundedLattice_502
v8 -> (AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny
v5
      T_BoundedLattice_616
_ -> AgdaAny -> AgdaAny -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.BoundedLattice.⊤
d_'8868'_650 :: T_BoundedLattice_616 -> AgdaAny
d_'8868'_650 :: T_BoundedLattice_616 -> AgdaAny
d_'8868'_650 T_BoundedLattice_616
v0
  = case T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0 of
      C_BoundedLattice'46'constructor_14911 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny
v6 AgdaAny
v7 T_IsBoundedLattice_502
v8 -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v6
      T_BoundedLattice_616
_ -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.BoundedLattice.⊥
d_'8869'_652 :: T_BoundedLattice_616 -> AgdaAny
d_'8869'_652 :: T_BoundedLattice_616 -> AgdaAny
d_'8869'_652 T_BoundedLattice_616
v0
  = case T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0 of
      C_BoundedLattice'46'constructor_14911 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny
v6 AgdaAny
v7 T_IsBoundedLattice_502
v8 -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v7
      T_BoundedLattice_616
_ -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.BoundedLattice.isBoundedLattice
d_isBoundedLattice_654 ::
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedLattice_502
d_isBoundedLattice_654 :: T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 T_BoundedLattice_616
v0
  = case T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0 of
      C_BoundedLattice'46'constructor_14911 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny
v6 AgdaAny
v7 T_IsBoundedLattice_502
v8 -> T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v8
      T_BoundedLattice_616
_ -> T_IsBoundedLattice_502
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.antisym
d_antisym_658 ::
  T_BoundedLattice_616 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_antisym_658 :: T_BoundedLattice_616
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_antisym_658 T_BoundedLattice_616
v0
  = (T_IsPartialOrder_174
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsPartialOrder_174
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_antisym_184
      ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
         ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
            ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.infimum
d_infimum_660 ::
  T_BoundedLattice_616 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_infimum_660 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> T_Σ_14
d_infimum_660 T_BoundedLattice_616
v0
  = (T_IsLattice_340 -> AgdaAny -> AgdaAny -> T_Σ_14)
-> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      T_IsLattice_340 -> AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_infimum_356
      ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
         ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0)))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.isBoundedJoinSemilattice
d_isBoundedJoinSemilattice_662 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_662 :: ()
-> ()
-> ()
-> T_BoundedLattice_616
-> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_662 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3
  = T_BoundedLattice_616 -> T_IsBoundedJoinSemilattice_116
du_isBoundedJoinSemilattice_662 T_BoundedLattice_616
v3
du_isBoundedJoinSemilattice_662 ::
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedJoinSemilattice_116
du_isBoundedJoinSemilattice_662 :: T_BoundedLattice_616 -> T_IsBoundedJoinSemilattice_116
du_isBoundedJoinSemilattice_662 T_BoundedLattice_616
v0
  = (T_IsBoundedLattice_502 -> T_IsBoundedJoinSemilattice_116)
-> AgdaAny -> T_IsBoundedJoinSemilattice_116
forall a b. a -> b
coe
      T_IsBoundedLattice_502 -> T_IsBoundedJoinSemilattice_116
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isBoundedJoinSemilattice_584
      ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.isBoundedMeetSemilattice
d_isBoundedMeetSemilattice_664 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_664 :: ()
-> ()
-> ()
-> T_BoundedLattice_616
-> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_664 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3
  = T_BoundedLattice_616 -> T_IsBoundedMeetSemilattice_274
du_isBoundedMeetSemilattice_664 T_BoundedLattice_616
v3
du_isBoundedMeetSemilattice_664 ::
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedMeetSemilattice_274
du_isBoundedMeetSemilattice_664 :: T_BoundedLattice_616 -> T_IsBoundedMeetSemilattice_274
du_isBoundedMeetSemilattice_664 T_BoundedLattice_616
v0
  = (T_IsBoundedLattice_502 -> T_IsBoundedMeetSemilattice_274)
-> AgdaAny -> T_IsBoundedMeetSemilattice_274
forall a b. a -> b
coe
      T_IsBoundedLattice_502 -> T_IsBoundedMeetSemilattice_274
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isBoundedMeetSemilattice_586
      ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.isEquivalence
d_isEquivalence_666 ::
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsEquivalence_26
d_isEquivalence_666 :: T_BoundedLattice_616 -> T_IsEquivalence_26
d_isEquivalence_666 T_BoundedLattice_616
v0
  = (T_IsPreorder_70 -> T_IsEquivalence_26)
-> AgdaAny -> T_IsEquivalence_26
forall a b. a -> b
coe
      T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
            ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
               ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0)))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.isJoinSemilattice
d_isJoinSemilattice_668 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsJoinSemilattice_22
d_isJoinSemilattice_668 :: () -> () -> () -> T_BoundedLattice_616 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_668 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3
  = T_BoundedLattice_616 -> T_IsJoinSemilattice_22
du_isJoinSemilattice_668 T_BoundedLattice_616
v3
du_isJoinSemilattice_668 ::
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsJoinSemilattice_22
du_isJoinSemilattice_668 :: T_BoundedLattice_616 -> T_IsJoinSemilattice_22
du_isJoinSemilattice_668 T_BoundedLattice_616
v0
  = let v1 :: T_IsBoundedLattice_502
v1 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0) in
    AgdaAny -> T_IsJoinSemilattice_22
forall a b. a -> b
coe
      ((T_IsLattice_340 -> T_IsJoinSemilattice_22) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
         ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
            (T_IsBoundedLattice_502 -> AgdaAny
forall a b. a -> b
coe T_IsBoundedLattice_502
v1)))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.isLattice
d_isLattice_670 ::
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsLattice_340
d_isLattice_670 :: T_BoundedLattice_616 -> T_IsLattice_340
d_isLattice_670 T_BoundedLattice_616
v0
  = (T_IsBoundedLattice_502 -> T_IsLattice_340)
-> AgdaAny -> T_IsLattice_340
forall a b. a -> b
coe
      T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
      ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.isMeetSemilattice
d_isMeetSemilattice_672 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsMeetSemilattice_180
d_isMeetSemilattice_672 :: () -> () -> () -> T_BoundedLattice_616 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_672 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3
  = T_BoundedLattice_616 -> T_IsMeetSemilattice_180
du_isMeetSemilattice_672 T_BoundedLattice_616
v3
du_isMeetSemilattice_672 ::
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsMeetSemilattice_180
du_isMeetSemilattice_672 :: T_BoundedLattice_616 -> T_IsMeetSemilattice_180
du_isMeetSemilattice_672 T_BoundedLattice_616
v0
  = let v1 :: T_IsBoundedLattice_502
v1 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0) in
    AgdaAny -> T_IsMeetSemilattice_180
forall a b. a -> b
coe
      ((T_IsLattice_340 -> T_IsMeetSemilattice_180) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
         ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
            (T_IsBoundedLattice_502 -> AgdaAny
forall a b. a -> b
coe T_IsBoundedLattice_502
v1)))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.isPartialOrder
d_isPartialOrder_674 ::
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialOrder_174
d_isPartialOrder_674 :: T_BoundedLattice_616 -> T_IsPartialOrder_174
d_isPartialOrder_674 T_BoundedLattice_616
v0
  = (T_IsLattice_340 -> T_IsPartialOrder_174)
-> AgdaAny -> T_IsPartialOrder_174
forall a b. a -> b
coe
      T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
      ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
         ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0)))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.isPreorder
d_isPreorder_676 ::
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPreorder_70
d_isPreorder_676 :: T_BoundedLattice_616 -> T_IsPreorder_70
d_isPreorder_676 T_BoundedLattice_616
v0
  = (T_IsPartialOrder_174 -> T_IsPreorder_70)
-> AgdaAny -> T_IsPreorder_70
forall a b. a -> b
coe
      T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
      ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
         ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
            ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.maximum
d_maximum_678 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny
d_maximum_678 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny
d_maximum_678 T_BoundedLattice_616
v0
  = (T_IsBoundedLattice_502 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsBoundedLattice_502 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_maximum_520
      ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.minimum
d_minimum_680 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny
d_minimum_680 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny
d_minimum_680 T_BoundedLattice_616
v0
  = (T_IsBoundedLattice_502 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsBoundedLattice_502 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_minimum_522
      ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.refl
d_refl_682 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 -> AgdaAny -> AgdaAny
d_refl_682 :: () -> () -> () -> T_BoundedLattice_616 -> AgdaAny -> AgdaAny
d_refl_682 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3 = T_BoundedLattice_616 -> AgdaAny -> AgdaAny
du_refl_682 T_BoundedLattice_616
v3
du_refl_682 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny
du_refl_682 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny
du_refl_682 T_BoundedLattice_616
v0
  = let v1 :: T_IsBoundedLattice_502
v1 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0) in
    AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2
             = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                 (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                    (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70 -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_refl_98
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.reflexive
d_reflexive_684 ::
  T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_reflexive_684 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_reflexive_684 T_BoundedLattice_616
v0
  = (T_IsPreorder_70 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsPreorder_70 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_reflexive_82
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
            ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
               ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0)))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.supremum
d_supremum_686 ::
  T_BoundedLattice_616 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_supremum_686 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> T_Σ_14
d_supremum_686 T_BoundedLattice_616
v0
  = (T_IsLattice_340 -> AgdaAny -> AgdaAny -> T_Σ_14)
-> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      T_IsLattice_340 -> AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_supremum_354
      ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
         ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0)))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.trans
d_trans_688 ::
  T_BoundedLattice_616 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_688 :: T_BoundedLattice_616
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_688 T_BoundedLattice_616
v0
  = (T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_84
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
            ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
               ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0)))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.x∧y≤x
d_x'8743'y'8804'x_690 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8743'y'8804'x_690 :: ()
-> ()
-> ()
-> T_BoundedLattice_616
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8743'y'8804'x_690 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3 = T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_690 T_BoundedLattice_616
v3
du_x'8743'y'8804'x_690 ::
  T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_690 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_690 T_BoundedLattice_616
v0
  = let v1 :: T_IsBoundedLattice_502
v1 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2
             = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                 (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8743'y'8804'x_196
            ((T_IsLattice_340 -> T_IsMeetSemilattice_180) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
               (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v2))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.x∧y≤y
d_x'8743'y'8804'y_692 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8743'y'8804'y_692 :: ()
-> ()
-> ()
-> T_BoundedLattice_616
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8743'y'8804'y_692 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3 = T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_692 T_BoundedLattice_616
v3
du_x'8743'y'8804'y_692 ::
  T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_692 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_692 T_BoundedLattice_616
v0
  = let v1 :: T_IsBoundedLattice_502
v1 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2
             = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                 (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8743'y'8804'y_208
            ((T_IsLattice_340 -> T_IsMeetSemilattice_180) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
               (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v2))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.x≤x∨y
d_x'8804'x'8744'y_694 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8804'x'8744'y_694 :: ()
-> ()
-> ()
-> T_BoundedLattice_616
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8804'x'8744'y_694 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3 = T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_694 T_BoundedLattice_616
v3
du_x'8804'x'8744'y_694 ::
  T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_694 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_694 T_BoundedLattice_616
v0
  = let v1 :: T_IsBoundedLattice_502
v1 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2
             = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                 (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8804'x'8744'y_38
            ((T_IsLattice_340 -> T_IsJoinSemilattice_22) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
               (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v2))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.y≤x∨y
d_y'8804'x'8744'y_696 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
d_y'8804'x'8744'y_696 :: ()
-> ()
-> ()
-> T_BoundedLattice_616
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_y'8804'x'8744'y_696 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3 = T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_696 T_BoundedLattice_616
v3
du_y'8804'x'8744'y_696 ::
  T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_696 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_696 T_BoundedLattice_616
v0
  = let v1 :: T_IsBoundedLattice_502
v1 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2
             = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                 (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_y'8804'x'8744'y_50
            ((T_IsLattice_340 -> T_IsJoinSemilattice_22) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
               (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v2))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.∧-greatest
d_'8743''45'greatest_698 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8743''45'greatest_698 :: ()
-> ()
-> ()
-> T_BoundedLattice_616
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8743''45'greatest_698 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3
  = T_BoundedLattice_616
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_698 T_BoundedLattice_616
v3
du_'8743''45'greatest_698 ::
  T_BoundedLattice_616 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_698 :: T_BoundedLattice_616
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_698 T_BoundedLattice_616
v0
  = let v1 :: T_IsBoundedLattice_502
v1 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2
             = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                 (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsMeetSemilattice_180
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsMeetSemilattice_180
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_'8743''45'greatest_222
            ((T_IsLattice_340 -> T_IsMeetSemilattice_180) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
               (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v2))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.∨-least
d_'8744''45'least_700 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8744''45'least_700 :: ()
-> ()
-> ()
-> T_BoundedLattice_616
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8744''45'least_700 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3 = T_BoundedLattice_616
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_700 T_BoundedLattice_616
v3
du_'8744''45'least_700 ::
  T_BoundedLattice_616 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_700 :: T_BoundedLattice_616
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_700 T_BoundedLattice_616
v0
  = let v1 :: T_IsBoundedLattice_502
v1 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2
             = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                 (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsJoinSemilattice_22
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsJoinSemilattice_22
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_'8744''45'least_64
            ((T_IsLattice_340 -> T_IsJoinSemilattice_22) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
               (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v2))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.∼-resp-≈
d_'8764''45'resp'45''8776'_702 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8764''45'resp'45''8776'_702 :: () -> () -> () -> T_BoundedLattice_616 -> T_Σ_14
d_'8764''45'resp'45''8776'_702 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3
  = T_BoundedLattice_616 -> T_Σ_14
du_'8764''45'resp'45''8776'_702 T_BoundedLattice_616
v3
du_'8764''45'resp'45''8776'_702 ::
  T_BoundedLattice_616 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8764''45'resp'45''8776'_702 :: T_BoundedLattice_616 -> T_Σ_14
du_'8764''45'resp'45''8776'_702 T_BoundedLattice_616
v0
  = let v1 :: T_IsBoundedLattice_502
v1 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0) in
    AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2
             = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                 (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                    (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70 -> T_Σ_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70 -> T_Σ_14
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'45''8776'_118
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.∼-respʳ-≈
d_'8764''45'resp'691''45''8776'_704 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8764''45'resp'691''45''8776'_704 :: ()
-> ()
-> ()
-> T_BoundedLattice_616
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8764''45'resp'691''45''8776'_704 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3
  = T_BoundedLattice_616
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_704 T_BoundedLattice_616
v3
du_'8764''45'resp'691''45''8776'_704 ::
  T_BoundedLattice_616 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_704 :: T_BoundedLattice_616
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_704 T_BoundedLattice_616
v0
  = let v1 :: T_IsBoundedLattice_502
v1 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2
             = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                 (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                    (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'691''45''8776'_116
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.∼-respˡ-≈
d_'8764''45'resp'737''45''8776'_706 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8764''45'resp'737''45''8776'_706 :: ()
-> ()
-> ()
-> T_BoundedLattice_616
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8764''45'resp'737''45''8776'_706 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3
  = T_BoundedLattice_616
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_706 T_BoundedLattice_616
v3
du_'8764''45'resp'737''45''8776'_706 ::
  T_BoundedLattice_616 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_706 :: T_BoundedLattice_616
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_706 T_BoundedLattice_616
v0
  = let v1 :: T_IsBoundedLattice_502
v1 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2
             = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                 (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                    (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'737''45''8776'_114
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.≲-resp-≈
d_'8818''45'resp'45''8776'_708 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8818''45'resp'45''8776'_708 :: () -> () -> () -> T_BoundedLattice_616 -> T_Σ_14
d_'8818''45'resp'45''8776'_708 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3
  = T_BoundedLattice_616 -> T_Σ_14
du_'8818''45'resp'45''8776'_708 T_BoundedLattice_616
v3
du_'8818''45'resp'45''8776'_708 ::
  T_BoundedLattice_616 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8818''45'resp'45''8776'_708 :: T_BoundedLattice_616 -> T_Σ_14
du_'8818''45'resp'45''8776'_708 T_BoundedLattice_616
v0
  = let v1 :: T_IsBoundedLattice_502
v1 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0) in
    AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2
             = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                 (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                    (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70 -> T_Σ_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70 -> T_Σ_14
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'45''8776'_112
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.≲-respʳ-≈
d_'8818''45'resp'691''45''8776'_710 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8818''45'resp'691''45''8776'_710 :: ()
-> ()
-> ()
-> T_BoundedLattice_616
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8818''45'resp'691''45''8776'_710 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3
  = T_BoundedLattice_616
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_710 T_BoundedLattice_616
v3
du_'8818''45'resp'691''45''8776'_710 ::
  T_BoundedLattice_616 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_710 :: T_BoundedLattice_616
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_710 T_BoundedLattice_616
v0
  = let v1 :: T_IsBoundedLattice_502
v1 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2
             = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                 (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                    (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'691''45''8776'_106
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.≲-respˡ-≈
d_'8818''45'resp'737''45''8776'_712 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8818''45'resp'737''45''8776'_712 :: ()
-> ()
-> ()
-> T_BoundedLattice_616
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8818''45'resp'737''45''8776'_712 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3
  = T_BoundedLattice_616
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_712 T_BoundedLattice_616
v3
du_'8818''45'resp'737''45''8776'_712 ::
  T_BoundedLattice_616 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_712 :: T_BoundedLattice_616
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_712 T_BoundedLattice_616
v0
  = let v1 :: T_IsBoundedLattice_502
v1 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2
             = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                 (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                    (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'737''45''8776'_100
               ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                  (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v3)))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.Eq.isPartialEquivalence
d_isPartialEquivalence_716 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialEquivalence_16
d_isPartialEquivalence_716 :: () -> () -> () -> T_BoundedLattice_616 -> T_IsPartialEquivalence_16
d_isPartialEquivalence_716 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3
  = T_BoundedLattice_616 -> T_IsPartialEquivalence_16
du_isPartialEquivalence_716 T_BoundedLattice_616
v3
du_isPartialEquivalence_716 ::
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialEquivalence_16
du_isPartialEquivalence_716 :: T_BoundedLattice_616 -> T_IsPartialEquivalence_16
du_isPartialEquivalence_716 T_BoundedLattice_616
v0
  = let v1 :: T_IsBoundedLattice_502
v1 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0) in
    AgdaAny -> T_IsPartialEquivalence_16
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2
             = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                 (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                    (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsPreorder_70
v4
                   = T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                       (T_IsPartialOrder_174 -> T_IsPartialOrder_174
forall a b. a -> b
coe T_IsPartialOrder_174
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               ((T_IsEquivalence_26 -> T_IsPartialEquivalence_16)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsEquivalence_26 -> T_IsPartialEquivalence_16
MAlonzo.Code.Relation.Binary.Structures.du_isPartialEquivalence_42
                  ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                     (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v4))))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.Eq.refl
d_refl_718 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny
d_refl_718 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny
d_refl_718 T_BoundedLattice_616
v0
  = (T_IsEquivalence_26 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
               ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                  ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0))))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.Eq.reflexive
d_reflexive_720 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 ->
  AgdaAny ->
  AgdaAny ->
  MAlonzo.Code.Agda.Builtin.Equality.T__'8801'__12 -> AgdaAny
d_reflexive_720 :: ()
-> ()
-> ()
-> T_BoundedLattice_616
-> AgdaAny
-> AgdaAny
-> T__'8801'__12
-> AgdaAny
d_reflexive_720 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3 = T_BoundedLattice_616
-> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
du_reflexive_720 T_BoundedLattice_616
v3
du_reflexive_720 ::
  T_BoundedLattice_616 ->
  AgdaAny ->
  AgdaAny ->
  MAlonzo.Code.Agda.Builtin.Equality.T__'8801'__12 -> AgdaAny
du_reflexive_720 :: T_BoundedLattice_616
-> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
du_reflexive_720 T_BoundedLattice_616
v0
  = let v1 :: T_IsBoundedLattice_502
v1 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsLattice_340
v2
             = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                 (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsPartialOrder_174
v3
                = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                    (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsPreorder_70
v4
                   = T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                       (T_IsPartialOrder_174 -> T_IsPartialOrder_174
forall a b. a -> b
coe T_IsPartialOrder_174
v3) in
             (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny
forall a b. a -> b
coe
               (\ AgdaAny
v5 AgdaAny
v6 AgdaAny
v7 ->
                  (T_IsEquivalence_26 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                    T_IsEquivalence_26 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_reflexive_40
                    ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                       T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                       (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v4))
                    AgdaAny
v5))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.Eq.sym
d_sym_722 ::
  T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_sym_722 :: T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_sym_722 T_BoundedLattice_616
v0
  = (T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
               ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                  ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0))))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.Eq.trans
d_trans_724 ::
  T_BoundedLattice_616 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_724 :: T_BoundedLattice_616
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_724 T_BoundedLattice_616
v0
  = (T_IsEquivalence_26
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_38
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
               ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                  ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0))))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice.boundedJoinSemilattice
d_boundedJoinSemilattice_726 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 -> T_BoundedJoinSemilattice_102
d_boundedJoinSemilattice_726 :: ()
-> () -> () -> T_BoundedLattice_616 -> T_BoundedJoinSemilattice_102
d_boundedJoinSemilattice_726 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3
  = T_BoundedLattice_616 -> T_BoundedJoinSemilattice_102
du_boundedJoinSemilattice_726 T_BoundedLattice_616
v3
du_boundedJoinSemilattice_726 ::
  T_BoundedLattice_616 -> T_BoundedJoinSemilattice_102
du_boundedJoinSemilattice_726 :: T_BoundedLattice_616 -> T_BoundedJoinSemilattice_102
du_boundedJoinSemilattice_726 T_BoundedLattice_616
v0
  = ((AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> T_IsBoundedJoinSemilattice_116
 -> T_BoundedJoinSemilattice_102)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> T_BoundedJoinSemilattice_102
forall a b. a -> b
coe
      (AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> T_IsBoundedJoinSemilattice_116
-> T_BoundedJoinSemilattice_102
C_BoundedJoinSemilattice'46'constructor_2401
      (T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__646 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0)) (T_BoundedLattice_616 -> AgdaAny
d_'8869'_652 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0))
      ((T_IsBoundedLattice_502 -> T_IsBoundedJoinSemilattice_116)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsBoundedLattice_502 -> T_IsBoundedJoinSemilattice_116
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isBoundedJoinSemilattice_584
         ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0)))
-- Relation.Binary.Lattice.Bundles.BoundedLattice.boundedMeetSemilattice
d_boundedMeetSemilattice_728 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 -> T_BoundedMeetSemilattice_288
d_boundedMeetSemilattice_728 :: ()
-> () -> () -> T_BoundedLattice_616 -> T_BoundedMeetSemilattice_288
d_boundedMeetSemilattice_728 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3
  = T_BoundedLattice_616 -> T_BoundedMeetSemilattice_288
du_boundedMeetSemilattice_728 T_BoundedLattice_616
v3
du_boundedMeetSemilattice_728 ::
  T_BoundedLattice_616 -> T_BoundedMeetSemilattice_288
du_boundedMeetSemilattice_728 :: T_BoundedLattice_616 -> T_BoundedMeetSemilattice_288
du_boundedMeetSemilattice_728 T_BoundedLattice_616
v0
  = ((AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> T_IsBoundedMeetSemilattice_274
 -> T_BoundedMeetSemilattice_288)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> T_BoundedMeetSemilattice_288
forall a b. a -> b
coe
      (AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> T_IsBoundedMeetSemilattice_274
-> T_BoundedMeetSemilattice_288
C_BoundedMeetSemilattice'46'constructor_6659
      (T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__648 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0)) (T_BoundedLattice_616 -> AgdaAny
d_'8868'_650 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0))
      ((T_IsBoundedLattice_502 -> T_IsBoundedMeetSemilattice_274)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsBoundedLattice_502 -> T_IsBoundedMeetSemilattice_274
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isBoundedMeetSemilattice_586
         ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0)))
-- Relation.Binary.Lattice.Bundles.BoundedLattice.lattice
d_lattice_730 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 -> T_Lattice_386
d_lattice_730 :: () -> () -> () -> T_BoundedLattice_616 -> T_Lattice_386
d_lattice_730 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3 = T_BoundedLattice_616 -> T_Lattice_386
du_lattice_730 T_BoundedLattice_616
v3
du_lattice_730 :: T_BoundedLattice_616 -> T_Lattice_386
du_lattice_730 :: T_BoundedLattice_616 -> T_Lattice_386
du_lattice_730 T_BoundedLattice_616
v0
  = ((AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny)
 -> T_IsLattice_340
 -> T_Lattice_386)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> T_IsLattice_340
-> T_Lattice_386
forall a b. a -> b
coe
      (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> T_IsLattice_340
-> T_Lattice_386
C_Lattice'46'constructor_8977 (T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__646 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0))
      (T_BoundedLattice_616 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__648 (T_BoundedLattice_616 -> T_BoundedLattice_616
forall a b. a -> b
coe T_BoundedLattice_616
v0))
      (T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
         ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0)))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.joinSemilattice
d_joinSemilattice_734 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 -> T_JoinSemilattice_14
d_joinSemilattice_734 :: () -> () -> () -> T_BoundedLattice_616 -> T_JoinSemilattice_14
d_joinSemilattice_734 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3 = T_BoundedLattice_616 -> T_JoinSemilattice_14
du_joinSemilattice_734 T_BoundedLattice_616
v3
du_joinSemilattice_734 ::
  T_BoundedLattice_616 -> T_JoinSemilattice_14
du_joinSemilattice_734 :: T_BoundedLattice_616 -> T_JoinSemilattice_14
du_joinSemilattice_734 T_BoundedLattice_616
v0
  = (T_Lattice_386 -> T_JoinSemilattice_14)
-> AgdaAny -> T_JoinSemilattice_14
forall a b. a -> b
coe T_Lattice_386 -> T_JoinSemilattice_14
du_joinSemilattice_480 ((T_BoundedLattice_616 -> T_Lattice_386) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_Lattice_386
du_lattice_730 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.meetSemilattice
d_meetSemilattice_736 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 -> T_MeetSemilattice_200
d_meetSemilattice_736 :: () -> () -> () -> T_BoundedLattice_616 -> T_MeetSemilattice_200
d_meetSemilattice_736 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3 = T_BoundedLattice_616 -> T_MeetSemilattice_200
du_meetSemilattice_736 T_BoundedLattice_616
v3
du_meetSemilattice_736 ::
  T_BoundedLattice_616 -> T_MeetSemilattice_200
du_meetSemilattice_736 :: T_BoundedLattice_616 -> T_MeetSemilattice_200
du_meetSemilattice_736 T_BoundedLattice_616
v0
  = (T_Lattice_386 -> T_MeetSemilattice_200)
-> AgdaAny -> T_MeetSemilattice_200
forall a b. a -> b
coe T_Lattice_386 -> T_MeetSemilattice_200
du_meetSemilattice_482 ((T_BoundedLattice_616 -> T_Lattice_386) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_Lattice_386
du_lattice_730 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.poset
d_poset_738 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314
d_poset_738 :: () -> () -> () -> T_BoundedLattice_616 -> T_Poset_314
d_poset_738 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3 = T_BoundedLattice_616 -> T_Poset_314
du_poset_738 T_BoundedLattice_616
v3
du_poset_738 ::
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314
du_poset_738 :: T_BoundedLattice_616 -> T_Poset_314
du_poset_738 T_BoundedLattice_616
v0
  = let v1 :: t
v1 = (T_BoundedLattice_616 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_BoundedLattice_616 -> T_Lattice_386
du_lattice_730 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0) in
    AgdaAny -> T_Poset_314
forall a b. a -> b
coe ((T_JoinSemilattice_14 -> T_Poset_314) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_Poset_314
du_poset_90 ((T_Lattice_386 -> T_JoinSemilattice_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_JoinSemilattice_14
du_joinSemilattice_480 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.preorder
d_preorder_740 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132
d_preorder_740 :: () -> () -> () -> T_BoundedLattice_616 -> T_Preorder_132
d_preorder_740 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3 = T_BoundedLattice_616 -> T_Preorder_132
du_preorder_740 T_BoundedLattice_616
v3
du_preorder_740 ::
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132
du_preorder_740 :: T_BoundedLattice_616 -> T_Preorder_132
du_preorder_740 T_BoundedLattice_616
v0
  = let v1 :: t
v1 = (T_BoundedLattice_616 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_BoundedLattice_616 -> T_Lattice_386
du_lattice_730 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0) in
    AgdaAny -> T_Preorder_132
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_Lattice_386 -> T_JoinSemilattice_14) -> AgdaAny -> t
forall a b. a -> b
coe T_Lattice_386 -> T_JoinSemilattice_14
du_joinSemilattice_480 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_Poset_314 -> T_Preorder_132) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_Poset_314 -> T_Preorder_132
MAlonzo.Code.Relation.Binary.Bundles.du_preorder_344
            ((T_JoinSemilattice_14 -> T_Poset_314) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_Poset_314
du_poset_90 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v2))))
-- Relation.Binary.Lattice.Bundles.BoundedLattice._.setoid
d_setoid_742 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Setoid_44
d_setoid_742 :: () -> () -> () -> T_BoundedLattice_616 -> T_Setoid_44
d_setoid_742 ~()
v0 ~()
v1 ~()
v2 T_BoundedLattice_616
v3 = T_BoundedLattice_616 -> T_Setoid_44
du_setoid_742 T_BoundedLattice_616
v3
du_setoid_742 ::
  T_BoundedLattice_616 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Setoid_44
du_setoid_742 :: T_BoundedLattice_616 -> T_Setoid_44
du_setoid_742 T_BoundedLattice_616
v0 = (T_Lattice_386 -> T_Setoid_44) -> AgdaAny -> T_Setoid_44
forall a b. a -> b
coe T_Lattice_386 -> T_Setoid_44
du_setoid_478 ((T_BoundedLattice_616 -> T_Lattice_386) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_Lattice_386
du_lattice_730 (T_BoundedLattice_616 -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616
v0))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra
d_HeytingAlgebra_750 :: p -> p -> p -> ()
d_HeytingAlgebra_750 p
a0 p
a1 p
a2 = ()
data T_HeytingAlgebra_750
  = C_HeytingAlgebra'46'constructor_18655 (AgdaAny ->
                                           AgdaAny -> AgdaAny)
                                          (AgdaAny -> AgdaAny -> AgdaAny)
                                          (AgdaAny -> AgdaAny -> AgdaAny) AgdaAny AgdaAny
                                          MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsHeytingAlgebra_598
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra.Carrier
d_Carrier_776 :: T_HeytingAlgebra_750 -> ()
d_Carrier_776 :: T_HeytingAlgebra_750 -> ()
d_Carrier_776 = T_HeytingAlgebra_750 -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._≈_
d__'8776'__778 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> ()
d__'8776'__778 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> ()
d__'8776'__778 = T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._≤_
d__'8804'__780 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> ()
d__'8804'__780 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> ()
d__'8804'__780 = T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._∨_
d__'8744'__782 ::
  T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__782 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__782 T_HeytingAlgebra_750
v0
  = case T_HeytingAlgebra_750 -> T_HeytingAlgebra_750
forall a b. a -> b
coe T_HeytingAlgebra_750
v0 of
      C_HeytingAlgebra'46'constructor_18655 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny -> AgdaAny -> AgdaAny
v6 AgdaAny
v7 AgdaAny
v8 T_IsHeytingAlgebra_598
v9 -> (AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny
v4
      T_HeytingAlgebra_750
_ -> AgdaAny -> AgdaAny -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._∧_
d__'8743'__784 ::
  T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__784 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__784 T_HeytingAlgebra_750
v0
  = case T_HeytingAlgebra_750 -> T_HeytingAlgebra_750
forall a b. a -> b
coe T_HeytingAlgebra_750
v0 of
      C_HeytingAlgebra'46'constructor_18655 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny -> AgdaAny -> AgdaAny
v6 AgdaAny
v7 AgdaAny
v8 T_IsHeytingAlgebra_598
v9 -> (AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny
v5
      T_HeytingAlgebra_750
_ -> AgdaAny -> AgdaAny -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._⇨_
d__'8680'__786 ::
  T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8680'__786 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8680'__786 T_HeytingAlgebra_750
v0
  = case T_HeytingAlgebra_750 -> T_HeytingAlgebra_750
forall a b. a -> b
coe T_HeytingAlgebra_750
v0 of
      C_HeytingAlgebra'46'constructor_18655 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny -> AgdaAny -> AgdaAny
v6 AgdaAny
v7 AgdaAny
v8 T_IsHeytingAlgebra_598
v9 -> (AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny
v6
      T_HeytingAlgebra_750
_ -> AgdaAny -> AgdaAny -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra.⊤
d_'8868'_788 :: T_HeytingAlgebra_750 -> AgdaAny
d_'8868'_788 :: T_HeytingAlgebra_750 -> AgdaAny
d_'8868'_788 T_HeytingAlgebra_750
v0
  = case T_HeytingAlgebra_750 -> T_HeytingAlgebra_750
forall a b. a -> b
coe T_HeytingAlgebra_750
v0 of
      C_HeytingAlgebra'46'constructor_18655 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny -> AgdaAny -> AgdaAny
v6 AgdaAny
v7 AgdaAny
v8 T_IsHeytingAlgebra_598
v9 -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v7
      T_HeytingAlgebra_750
_ -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra.⊥
d_'8869'_790 :: T_HeytingAlgebra_750 -> AgdaAny
d_'8869'_790 :: T_HeytingAlgebra_750 -> AgdaAny
d_'8869'_790 T_HeytingAlgebra_750
v0
  = case T_HeytingAlgebra_750 -> T_HeytingAlgebra_750
forall a b. a -> b
coe T_HeytingAlgebra_750
v0 of
      C_HeytingAlgebra'46'constructor_18655 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny -> AgdaAny -> AgdaAny
v6 AgdaAny
v7 AgdaAny
v8 T_IsHeytingAlgebra_598
v9 -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v8
      T_HeytingAlgebra_750
_ -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra.isHeytingAlgebra
d_isHeytingAlgebra_792 ::
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 :: T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 T_HeytingAlgebra_750
v0
  = case T_HeytingAlgebra_750 -> T_HeytingAlgebra_750
forall a b. a -> b
coe T_HeytingAlgebra_750
v0 of
      C_HeytingAlgebra'46'constructor_18655 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny -> AgdaAny -> AgdaAny
v6 AgdaAny
v7 AgdaAny
v8 T_IsHeytingAlgebra_598
v9 -> T_IsHeytingAlgebra_598 -> T_IsHeytingAlgebra_598
forall a b. a -> b
coe T_IsHeytingAlgebra_598
v9
      T_HeytingAlgebra_750
_ -> T_IsHeytingAlgebra_598
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra.boundedLattice
d_boundedLattice_794 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 -> T_BoundedLattice_616
d_boundedLattice_794 :: () -> () -> () -> T_HeytingAlgebra_750 -> T_BoundedLattice_616
d_boundedLattice_794 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 T_HeytingAlgebra_750
v3
du_boundedLattice_794 ::
  T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 :: T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 T_HeytingAlgebra_750
v0
  = ((AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> AgdaAny
 -> T_IsBoundedLattice_502
 -> T_BoundedLattice_616)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> T_IsBoundedLattice_502
-> T_BoundedLattice_616
forall a b. a -> b
coe
      (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> T_IsBoundedLattice_502
-> T_BoundedLattice_616
C_BoundedLattice'46'constructor_14911 (T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__782 (T_HeytingAlgebra_750 -> T_HeytingAlgebra_750
forall a b. a -> b
coe T_HeytingAlgebra_750
v0))
      (T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__784 (T_HeytingAlgebra_750 -> T_HeytingAlgebra_750
forall a b. a -> b
coe T_HeytingAlgebra_750
v0)) (T_HeytingAlgebra_750 -> AgdaAny
d_'8868'_788 (T_HeytingAlgebra_750 -> T_HeytingAlgebra_750
forall a b. a -> b
coe T_HeytingAlgebra_750
v0))
      (T_HeytingAlgebra_750 -> AgdaAny
d_'8869'_790 (T_HeytingAlgebra_750 -> T_HeytingAlgebra_750
forall a b. a -> b
coe T_HeytingAlgebra_750
v0))
      (T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
         ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> T_IsHeytingAlgebra_598
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0)))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.exponential
d_exponential_798 ::
  T_HeytingAlgebra_750 ->
  AgdaAny ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_exponential_798 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
d_exponential_798 T_HeytingAlgebra_750
v0
  = (T_IsHeytingAlgebra_598 -> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      T_IsHeytingAlgebra_598 -> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_exponential_616
      ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.transpose-⇨
d_transpose'45''8680'_800 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_transpose'45''8680'_800 :: ()
-> ()
-> ()
-> T_HeytingAlgebra_750
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_transpose'45''8680'_800 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3
  = T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_transpose'45''8680'_800 T_HeytingAlgebra_750
v3
du_transpose'45''8680'_800 ::
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_transpose'45''8680'_800 :: T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_transpose'45''8680'_800 T_HeytingAlgebra_750
v0
  = (T_IsHeytingAlgebra_598
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsHeytingAlgebra_598
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_transpose'45''8680'_624
      ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.transpose-∧
d_transpose'45''8743'_802 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_transpose'45''8743'_802 :: ()
-> ()
-> ()
-> T_HeytingAlgebra_750
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_transpose'45''8743'_802 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3
  = T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_transpose'45''8743'_802 T_HeytingAlgebra_750
v3
du_transpose'45''8743'_802 ::
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_transpose'45''8743'_802 :: T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_transpose'45''8743'_802 T_HeytingAlgebra_750
v0
  = (T_IsHeytingAlgebra_598
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsHeytingAlgebra_598
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_transpose'45''8743'_640
      ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.antisym
d_antisym_806 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_antisym_806 :: ()
-> ()
-> ()
-> T_HeytingAlgebra_750
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_antisym_806 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_antisym_806 T_HeytingAlgebra_750
v3
du_antisym_806 ::
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_antisym_806 :: T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_antisym_806 T_HeytingAlgebra_750
v0
  = (T_IsPartialOrder_174
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsPartialOrder_174
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_antisym_184
      ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
         ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
            ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
               ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0)))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.boundedJoinSemilattice
d_boundedJoinSemilattice_808 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 -> T_BoundedJoinSemilattice_102
d_boundedJoinSemilattice_808 :: ()
-> () -> () -> T_HeytingAlgebra_750 -> T_BoundedJoinSemilattice_102
d_boundedJoinSemilattice_808 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3
  = T_HeytingAlgebra_750 -> T_BoundedJoinSemilattice_102
du_boundedJoinSemilattice_808 T_HeytingAlgebra_750
v3
du_boundedJoinSemilattice_808 ::
  T_HeytingAlgebra_750 -> T_BoundedJoinSemilattice_102
du_boundedJoinSemilattice_808 :: T_HeytingAlgebra_750 -> T_BoundedJoinSemilattice_102
du_boundedJoinSemilattice_808 T_HeytingAlgebra_750
v0
  = (T_BoundedLattice_616 -> T_BoundedJoinSemilattice_102)
-> AgdaAny -> T_BoundedJoinSemilattice_102
forall a b. a -> b
coe
      T_BoundedLattice_616 -> T_BoundedJoinSemilattice_102
du_boundedJoinSemilattice_726 ((T_HeytingAlgebra_750 -> T_BoundedLattice_616)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.boundedMeetSemilattice
d_boundedMeetSemilattice_810 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 -> T_BoundedMeetSemilattice_288
d_boundedMeetSemilattice_810 :: ()
-> () -> () -> T_HeytingAlgebra_750 -> T_BoundedMeetSemilattice_288
d_boundedMeetSemilattice_810 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3
  = T_HeytingAlgebra_750 -> T_BoundedMeetSemilattice_288
du_boundedMeetSemilattice_810 T_HeytingAlgebra_750
v3
du_boundedMeetSemilattice_810 ::
  T_HeytingAlgebra_750 -> T_BoundedMeetSemilattice_288
du_boundedMeetSemilattice_810 :: T_HeytingAlgebra_750 -> T_BoundedMeetSemilattice_288
du_boundedMeetSemilattice_810 T_HeytingAlgebra_750
v0
  = (T_BoundedLattice_616 -> T_BoundedMeetSemilattice_288)
-> AgdaAny -> T_BoundedMeetSemilattice_288
forall a b. a -> b
coe
      T_BoundedLattice_616 -> T_BoundedMeetSemilattice_288
du_boundedMeetSemilattice_728 ((T_HeytingAlgebra_750 -> T_BoundedLattice_616)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.infimum
d_infimum_812 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_infimum_812 :: ()
-> () -> () -> T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> T_Σ_14
d_infimum_812 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> T_Σ_14
du_infimum_812 T_HeytingAlgebra_750
v3
du_infimum_812 ::
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_infimum_812 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> T_Σ_14
du_infimum_812 T_HeytingAlgebra_750
v0
  = (T_IsLattice_340 -> AgdaAny -> AgdaAny -> T_Σ_14)
-> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      T_IsLattice_340 -> AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_infimum_356
      ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
         ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
            ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.isBoundedJoinSemilattice
d_isBoundedJoinSemilattice_814 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_814 :: ()
-> ()
-> ()
-> T_HeytingAlgebra_750
-> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_814 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3
  = T_HeytingAlgebra_750 -> T_IsBoundedJoinSemilattice_116
du_isBoundedJoinSemilattice_814 T_HeytingAlgebra_750
v3
du_isBoundedJoinSemilattice_814 ::
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedJoinSemilattice_116
du_isBoundedJoinSemilattice_814 :: T_HeytingAlgebra_750 -> T_IsBoundedJoinSemilattice_116
du_isBoundedJoinSemilattice_814 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny -> T_IsBoundedJoinSemilattice_116
forall a b. a -> b
coe
      ((T_IsBoundedLattice_502 -> T_IsBoundedJoinSemilattice_116)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsBoundedLattice_502 -> T_IsBoundedJoinSemilattice_116
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isBoundedJoinSemilattice_584
         ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.isBoundedLattice
d_isBoundedLattice_816 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedLattice_502
d_isBoundedLattice_816 :: () -> () -> () -> T_HeytingAlgebra_750 -> T_IsBoundedLattice_502
d_isBoundedLattice_816 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> T_IsBoundedLattice_502
du_isBoundedLattice_816 T_HeytingAlgebra_750
v3
du_isBoundedLattice_816 ::
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedLattice_502
du_isBoundedLattice_816 :: T_HeytingAlgebra_750 -> T_IsBoundedLattice_502
du_isBoundedLattice_816 T_HeytingAlgebra_750
v0
  = (T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> T_IsBoundedLattice_502
forall a b. a -> b
coe
      T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
      ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.isBoundedMeetSemilattice
d_isBoundedMeetSemilattice_818 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_818 :: ()
-> ()
-> ()
-> T_HeytingAlgebra_750
-> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_818 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3
  = T_HeytingAlgebra_750 -> T_IsBoundedMeetSemilattice_274
du_isBoundedMeetSemilattice_818 T_HeytingAlgebra_750
v3
du_isBoundedMeetSemilattice_818 ::
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedMeetSemilattice_274
du_isBoundedMeetSemilattice_818 :: T_HeytingAlgebra_750 -> T_IsBoundedMeetSemilattice_274
du_isBoundedMeetSemilattice_818 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny -> T_IsBoundedMeetSemilattice_274
forall a b. a -> b
coe
      ((T_IsBoundedLattice_502 -> T_IsBoundedMeetSemilattice_274)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsBoundedLattice_502 -> T_IsBoundedMeetSemilattice_274
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isBoundedMeetSemilattice_586
         ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.isEquivalence
d_isEquivalence_820 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsEquivalence_26
d_isEquivalence_820 :: () -> () -> () -> T_HeytingAlgebra_750 -> T_IsEquivalence_26
d_isEquivalence_820 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> T_IsEquivalence_26
du_isEquivalence_820 T_HeytingAlgebra_750
v3
du_isEquivalence_820 ::
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsEquivalence_26
du_isEquivalence_820 :: T_HeytingAlgebra_750 -> T_IsEquivalence_26
du_isEquivalence_820 T_HeytingAlgebra_750
v0
  = (T_IsPreorder_70 -> T_IsEquivalence_26)
-> AgdaAny -> T_IsEquivalence_26
forall a b. a -> b
coe
      T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
            ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
               ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
                  ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0))))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.isJoinSemilattice
d_isJoinSemilattice_822 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsJoinSemilattice_22
d_isJoinSemilattice_822 :: () -> () -> () -> T_HeytingAlgebra_750 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_822 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3
  = T_HeytingAlgebra_750 -> T_IsJoinSemilattice_22
du_isJoinSemilattice_822 T_HeytingAlgebra_750
v3
du_isJoinSemilattice_822 ::
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsJoinSemilattice_22
du_isJoinSemilattice_822 :: T_HeytingAlgebra_750 -> T_IsJoinSemilattice_22
du_isJoinSemilattice_822 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny -> T_IsJoinSemilattice_22
forall a b. a -> b
coe
      (let v2 :: T_IsBoundedLattice_502
v2 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsLattice_340 -> T_IsJoinSemilattice_22) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
            ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
               (T_IsBoundedLattice_502 -> AgdaAny
forall a b. a -> b
coe T_IsBoundedLattice_502
v2))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.isLattice
d_isLattice_824 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsLattice_340
d_isLattice_824 :: () -> () -> () -> T_HeytingAlgebra_750 -> T_IsLattice_340
d_isLattice_824 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> T_IsLattice_340
du_isLattice_824 T_HeytingAlgebra_750
v3
du_isLattice_824 ::
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsLattice_340
du_isLattice_824 :: T_HeytingAlgebra_750 -> T_IsLattice_340
du_isLattice_824 T_HeytingAlgebra_750
v0
  = (T_IsBoundedLattice_502 -> T_IsLattice_340)
-> AgdaAny -> T_IsLattice_340
forall a b. a -> b
coe
      T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
      ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
         ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0)))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.isMeetSemilattice
d_isMeetSemilattice_826 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsMeetSemilattice_180
d_isMeetSemilattice_826 :: () -> () -> () -> T_HeytingAlgebra_750 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_826 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3
  = T_HeytingAlgebra_750 -> T_IsMeetSemilattice_180
du_isMeetSemilattice_826 T_HeytingAlgebra_750
v3
du_isMeetSemilattice_826 ::
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsMeetSemilattice_180
du_isMeetSemilattice_826 :: T_HeytingAlgebra_750 -> T_IsMeetSemilattice_180
du_isMeetSemilattice_826 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny -> T_IsMeetSemilattice_180
forall a b. a -> b
coe
      (let v2 :: T_IsBoundedLattice_502
v2 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsLattice_340 -> T_IsMeetSemilattice_180) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
            ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
               (T_IsBoundedLattice_502 -> AgdaAny
forall a b. a -> b
coe T_IsBoundedLattice_502
v2))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.isPartialOrder
d_isPartialOrder_828 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialOrder_174
d_isPartialOrder_828 :: () -> () -> () -> T_HeytingAlgebra_750 -> T_IsPartialOrder_174
d_isPartialOrder_828 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> T_IsPartialOrder_174
du_isPartialOrder_828 T_HeytingAlgebra_750
v3
du_isPartialOrder_828 ::
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialOrder_174
du_isPartialOrder_828 :: T_HeytingAlgebra_750 -> T_IsPartialOrder_174
du_isPartialOrder_828 T_HeytingAlgebra_750
v0
  = (T_IsLattice_340 -> T_IsPartialOrder_174)
-> AgdaAny -> T_IsPartialOrder_174
forall a b. a -> b
coe
      T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
      ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
         ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
            ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.isPreorder
d_isPreorder_830 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPreorder_70
d_isPreorder_830 :: () -> () -> () -> T_HeytingAlgebra_750 -> T_IsPreorder_70
d_isPreorder_830 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> T_IsPreorder_70
du_isPreorder_830 T_HeytingAlgebra_750
v3
du_isPreorder_830 ::
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPreorder_70
du_isPreorder_830 :: T_HeytingAlgebra_750 -> T_IsPreorder_70
du_isPreorder_830 T_HeytingAlgebra_750
v0
  = (T_IsPartialOrder_174 -> T_IsPreorder_70)
-> AgdaAny -> T_IsPreorder_70
forall a b. a -> b
coe
      T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
      ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
         ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
            ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
               ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0)))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.joinSemilattice
d_joinSemilattice_832 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 -> T_JoinSemilattice_14
d_joinSemilattice_832 :: () -> () -> () -> T_HeytingAlgebra_750 -> T_JoinSemilattice_14
d_joinSemilattice_832 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> T_JoinSemilattice_14
du_joinSemilattice_832 T_HeytingAlgebra_750
v3
du_joinSemilattice_832 ::
  T_HeytingAlgebra_750 -> T_JoinSemilattice_14
du_joinSemilattice_832 :: T_HeytingAlgebra_750 -> T_JoinSemilattice_14
du_joinSemilattice_832 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny -> T_JoinSemilattice_14
forall a b. a -> b
coe ((T_Lattice_386 -> T_JoinSemilattice_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_JoinSemilattice_14
du_joinSemilattice_480 ((T_BoundedLattice_616 -> T_Lattice_386) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_Lattice_386
du_lattice_730 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.lattice
d_lattice_834 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 -> T_Lattice_386
d_lattice_834 :: () -> () -> () -> T_HeytingAlgebra_750 -> T_Lattice_386
d_lattice_834 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> T_Lattice_386
du_lattice_834 T_HeytingAlgebra_750
v3
du_lattice_834 :: T_HeytingAlgebra_750 -> T_Lattice_386
du_lattice_834 :: T_HeytingAlgebra_750 -> T_Lattice_386
du_lattice_834 T_HeytingAlgebra_750
v0
  = (T_BoundedLattice_616 -> T_Lattice_386) -> AgdaAny -> T_Lattice_386
forall a b. a -> b
coe T_BoundedLattice_616 -> T_Lattice_386
du_lattice_730 ((T_HeytingAlgebra_750 -> T_BoundedLattice_616)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.maximum
d_maximum_836 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny
d_maximum_836 :: () -> () -> () -> T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny
d_maximum_836 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny
du_maximum_836 T_HeytingAlgebra_750
v3
du_maximum_836 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny
du_maximum_836 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny
du_maximum_836 T_HeytingAlgebra_750
v0
  = (T_IsBoundedLattice_502 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsBoundedLattice_502 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_maximum_520
      ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
         ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0)))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.meetSemilattice
d_meetSemilattice_838 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 -> T_MeetSemilattice_200
d_meetSemilattice_838 :: () -> () -> () -> T_HeytingAlgebra_750 -> T_MeetSemilattice_200
d_meetSemilattice_838 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> T_MeetSemilattice_200
du_meetSemilattice_838 T_HeytingAlgebra_750
v3
du_meetSemilattice_838 ::
  T_HeytingAlgebra_750 -> T_MeetSemilattice_200
du_meetSemilattice_838 :: T_HeytingAlgebra_750 -> T_MeetSemilattice_200
du_meetSemilattice_838 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny -> T_MeetSemilattice_200
forall a b. a -> b
coe ((T_Lattice_386 -> T_MeetSemilattice_200) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_MeetSemilattice_200
du_meetSemilattice_482 ((T_BoundedLattice_616 -> T_Lattice_386) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_Lattice_386
du_lattice_730 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.minimum
d_minimum_840 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny
d_minimum_840 :: () -> () -> () -> T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny
d_minimum_840 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny
du_minimum_840 T_HeytingAlgebra_750
v3
du_minimum_840 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny
du_minimum_840 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny
du_minimum_840 T_HeytingAlgebra_750
v0
  = (T_IsBoundedLattice_502 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsBoundedLattice_502 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_minimum_522
      ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
         ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0)))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.poset
d_poset_842 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314
d_poset_842 :: () -> () -> () -> T_HeytingAlgebra_750 -> T_Poset_314
d_poset_842 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> T_Poset_314
du_poset_842 T_HeytingAlgebra_750
v3
du_poset_842 ::
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314
du_poset_842 :: T_HeytingAlgebra_750 -> T_Poset_314
du_poset_842 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny -> T_Poset_314
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_BoundedLattice_616 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_BoundedLattice_616 -> T_Lattice_386
du_lattice_730 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe ((T_JoinSemilattice_14 -> T_Poset_314) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_Poset_314
du_poset_90 ((T_Lattice_386 -> T_JoinSemilattice_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_JoinSemilattice_14
du_joinSemilattice_480 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v2))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.preorder
d_preorder_844 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132
d_preorder_844 :: () -> () -> () -> T_HeytingAlgebra_750 -> T_Preorder_132
d_preorder_844 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> T_Preorder_132
du_preorder_844 T_HeytingAlgebra_750
v3
du_preorder_844 ::
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132
du_preorder_844 :: T_HeytingAlgebra_750 -> T_Preorder_132
du_preorder_844 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny -> T_Preorder_132
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_BoundedLattice_616 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_BoundedLattice_616 -> T_Lattice_386
du_lattice_730 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: t
v3 = (T_Lattice_386 -> T_JoinSemilattice_14) -> AgdaAny -> t
forall a b. a -> b
coe T_Lattice_386 -> T_JoinSemilattice_14
du_joinSemilattice_480 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_Poset_314 -> T_Preorder_132) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_Poset_314 -> T_Preorder_132
MAlonzo.Code.Relation.Binary.Bundles.du_preorder_344
               ((T_JoinSemilattice_14 -> T_Poset_314) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_Poset_314
du_poset_90 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v3)))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.refl
d_refl_846 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny
d_refl_846 :: () -> () -> () -> T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny
d_refl_846 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny
du_refl_846 T_HeytingAlgebra_750
v3
du_refl_846 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny
du_refl_846 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny
du_refl_846 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsBoundedLattice_502
v2 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsLattice_340
v3
                = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                    (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsPartialOrder_174
v4
                   = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                       (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               ((T_IsPreorder_70 -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPreorder_70 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_refl_98
                  ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                     (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v4))))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.reflexive
d_reflexive_848 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_reflexive_848 :: ()
-> ()
-> ()
-> T_HeytingAlgebra_750
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_reflexive_848 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_reflexive_848 T_HeytingAlgebra_750
v3
du_reflexive_848 ::
  T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_reflexive_848 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_reflexive_848 T_HeytingAlgebra_750
v0
  = (T_IsPreorder_70 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsPreorder_70 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_reflexive_82
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
            ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
               ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
                  ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0))))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.setoid
d_setoid_850 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Setoid_44
d_setoid_850 :: () -> () -> () -> T_HeytingAlgebra_750 -> T_Setoid_44
d_setoid_850 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> T_Setoid_44
du_setoid_850 T_HeytingAlgebra_750
v3
du_setoid_850 ::
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Setoid_44
du_setoid_850 :: T_HeytingAlgebra_750 -> T_Setoid_44
du_setoid_850 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny -> T_Setoid_44
forall a b. a -> b
coe ((T_Lattice_386 -> T_Setoid_44) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_Setoid_44
du_setoid_478 ((T_BoundedLattice_616 -> T_Lattice_386) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_Lattice_386
du_lattice_730 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.supremum
d_supremum_852 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_supremum_852 :: ()
-> () -> () -> T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> T_Σ_14
d_supremum_852 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> T_Σ_14
du_supremum_852 T_HeytingAlgebra_750
v3
du_supremum_852 ::
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_supremum_852 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> T_Σ_14
du_supremum_852 T_HeytingAlgebra_750
v0
  = (T_IsLattice_340 -> AgdaAny -> AgdaAny -> T_Σ_14)
-> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      T_IsLattice_340 -> AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_supremum_354
      ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
         ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
            ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.trans
d_trans_854 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_854 :: ()
-> ()
-> ()
-> T_HeytingAlgebra_750
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_trans_854 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_854 T_HeytingAlgebra_750
v3
du_trans_854 ::
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_854 :: T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_854 T_HeytingAlgebra_750
v0
  = (T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_84
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
            ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
               ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
                  ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0))))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.x∧y≤x
d_x'8743'y'8804'x_856 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8743'y'8804'x_856 :: ()
-> ()
-> ()
-> T_HeytingAlgebra_750
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8743'y'8804'x_856 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_856 T_HeytingAlgebra_750
v3
du_x'8743'y'8804'x_856 ::
  T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_856 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_856 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsBoundedLattice_502
v2 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsLattice_340
v3
                = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                    (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8743'y'8804'x_196
               ((T_IsLattice_340 -> T_IsMeetSemilattice_180) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
                  (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v3)))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.x∧y≤y
d_x'8743'y'8804'y_858 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8743'y'8804'y_858 :: ()
-> ()
-> ()
-> T_HeytingAlgebra_750
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8743'y'8804'y_858 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_858 T_HeytingAlgebra_750
v3
du_x'8743'y'8804'y_858 ::
  T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_858 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_858 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsBoundedLattice_502
v2 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsLattice_340
v3
                = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                    (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8743'y'8804'y_208
               ((T_IsLattice_340 -> T_IsMeetSemilattice_180) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
                  (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v3)))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.x≤x∨y
d_x'8804'x'8744'y_860 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8804'x'8744'y_860 :: ()
-> ()
-> ()
-> T_HeytingAlgebra_750
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8804'x'8744'y_860 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_860 T_HeytingAlgebra_750
v3
du_x'8804'x'8744'y_860 ::
  T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_860 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_860 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsBoundedLattice_502
v2 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsLattice_340
v3
                = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                    (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8804'x'8744'y_38
               ((T_IsLattice_340 -> T_IsJoinSemilattice_22) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
                  (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v3)))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.y≤x∨y
d_y'8804'x'8744'y_862 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
d_y'8804'x'8744'y_862 :: ()
-> ()
-> ()
-> T_HeytingAlgebra_750
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_y'8804'x'8744'y_862 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_862 T_HeytingAlgebra_750
v3
du_y'8804'x'8744'y_862 ::
  T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_862 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_862 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsBoundedLattice_502
v2 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsLattice_340
v3
                = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                    (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_y'8804'x'8744'y_50
               ((T_IsLattice_340 -> T_IsJoinSemilattice_22) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
                  (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v3)))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.∧-greatest
d_'8743''45'greatest_864 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8743''45'greatest_864 :: ()
-> ()
-> ()
-> T_HeytingAlgebra_750
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8743''45'greatest_864 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3
  = T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_864 T_HeytingAlgebra_750
v3
du_'8743''45'greatest_864 ::
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_864 :: T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_864 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsBoundedLattice_502
v2 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsLattice_340
v3
                = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                    (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsMeetSemilattice_180
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsMeetSemilattice_180
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_'8743''45'greatest_222
               ((T_IsLattice_340 -> T_IsMeetSemilattice_180) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
                  (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v3)))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.∨-least
d_'8744''45'least_866 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8744''45'least_866 :: ()
-> ()
-> ()
-> T_HeytingAlgebra_750
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8744''45'least_866 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_866 T_HeytingAlgebra_750
v3
du_'8744''45'least_866 ::
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_866 :: T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_866 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsBoundedLattice_502
v2 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsLattice_340
v3
                = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                    (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsJoinSemilattice_22
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsJoinSemilattice_22
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_'8744''45'least_64
               ((T_IsLattice_340 -> T_IsJoinSemilattice_22) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
                  (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v3)))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.∼-resp-≈
d_'8764''45'resp'45''8776'_868 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8764''45'resp'45''8776'_868 :: () -> () -> () -> T_HeytingAlgebra_750 -> T_Σ_14
d_'8764''45'resp'45''8776'_868 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3
  = T_HeytingAlgebra_750 -> T_Σ_14
du_'8764''45'resp'45''8776'_868 T_HeytingAlgebra_750
v3
du_'8764''45'resp'45''8776'_868 ::
  T_HeytingAlgebra_750 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8764''45'resp'45''8776'_868 :: T_HeytingAlgebra_750 -> T_Σ_14
du_'8764''45'resp'45''8776'_868 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      (let v2 :: T_IsBoundedLattice_502
v2 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsLattice_340
v3
                = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                    (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsPartialOrder_174
v4
                   = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                       (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               ((T_IsPreorder_70 -> T_Σ_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPreorder_70 -> T_Σ_14
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'45''8776'_118
                  ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                     (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v4))))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.∼-respʳ-≈
d_'8764''45'resp'691''45''8776'_870 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8764''45'resp'691''45''8776'_870 :: ()
-> ()
-> ()
-> T_HeytingAlgebra_750
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8764''45'resp'691''45''8776'_870 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3
  = T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_870 T_HeytingAlgebra_750
v3
du_'8764''45'resp'691''45''8776'_870 ::
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_870 :: T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_870 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsBoundedLattice_502
v2 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsLattice_340
v3
                = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                    (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsPartialOrder_174
v4
                   = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                       (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'691''45''8776'_116
                  ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                     (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v4))))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.∼-respˡ-≈
d_'8764''45'resp'737''45''8776'_872 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8764''45'resp'737''45''8776'_872 :: ()
-> ()
-> ()
-> T_HeytingAlgebra_750
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8764''45'resp'737''45''8776'_872 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3
  = T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_872 T_HeytingAlgebra_750
v3
du_'8764''45'resp'737''45''8776'_872 ::
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_872 :: T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_872 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsBoundedLattice_502
v2 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsLattice_340
v3
                = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                    (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsPartialOrder_174
v4
                   = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                       (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'737''45''8776'_114
                  ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                     (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v4))))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.≲-resp-≈
d_'8818''45'resp'45''8776'_874 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8818''45'resp'45''8776'_874 :: () -> () -> () -> T_HeytingAlgebra_750 -> T_Σ_14
d_'8818''45'resp'45''8776'_874 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3
  = T_HeytingAlgebra_750 -> T_Σ_14
du_'8818''45'resp'45''8776'_874 T_HeytingAlgebra_750
v3
du_'8818''45'resp'45''8776'_874 ::
  T_HeytingAlgebra_750 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8818''45'resp'45''8776'_874 :: T_HeytingAlgebra_750 -> T_Σ_14
du_'8818''45'resp'45''8776'_874 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      (let v2 :: T_IsBoundedLattice_502
v2 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsLattice_340
v3
                = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                    (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsPartialOrder_174
v4
                   = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                       (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               ((T_IsPreorder_70 -> T_Σ_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPreorder_70 -> T_Σ_14
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'45''8776'_112
                  ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                     (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v4))))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.≲-respʳ-≈
d_'8818''45'resp'691''45''8776'_876 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8818''45'resp'691''45''8776'_876 :: ()
-> ()
-> ()
-> T_HeytingAlgebra_750
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8818''45'resp'691''45''8776'_876 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3
  = T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_876 T_HeytingAlgebra_750
v3
du_'8818''45'resp'691''45''8776'_876 ::
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_876 :: T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_876 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsBoundedLattice_502
v2 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsLattice_340
v3
                = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                    (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsPartialOrder_174
v4
                   = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                       (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'691''45''8776'_106
                  ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                     (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v4))))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.≲-respˡ-≈
d_'8818''45'resp'737''45''8776'_878 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8818''45'resp'737''45''8776'_878 :: ()
-> ()
-> ()
-> T_HeytingAlgebra_750
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8818''45'resp'737''45''8776'_878 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3
  = T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_878 T_HeytingAlgebra_750
v3
du_'8818''45'resp'737''45''8776'_878 ::
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_878 :: T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_878 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsBoundedLattice_502
v2 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsLattice_340
v3
                = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                    (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsPartialOrder_174
v4
                   = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                       (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'737''45''8776'_100
                  ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                     (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v4))))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.Eq.isPartialEquivalence
d_isPartialEquivalence_882 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialEquivalence_16
d_isPartialEquivalence_882 :: () -> () -> () -> T_HeytingAlgebra_750 -> T_IsPartialEquivalence_16
d_isPartialEquivalence_882 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3
  = T_HeytingAlgebra_750 -> T_IsPartialEquivalence_16
du_isPartialEquivalence_882 T_HeytingAlgebra_750
v3
du_isPartialEquivalence_882 ::
  T_HeytingAlgebra_750 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialEquivalence_16
du_isPartialEquivalence_882 :: T_HeytingAlgebra_750 -> T_IsPartialEquivalence_16
du_isPartialEquivalence_882 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny -> T_IsPartialEquivalence_16
forall a b. a -> b
coe
      (let v2 :: T_IsBoundedLattice_502
v2 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsLattice_340
v3
                = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                    (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsPartialOrder_174
v4
                   = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                       (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               (let v5 :: T_IsPreorder_70
v5
                      = T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                          (T_IsPartialOrder_174 -> T_IsPartialOrder_174
forall a b. a -> b
coe T_IsPartialOrder_174
v4) in
                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  ((T_IsEquivalence_26 -> T_IsPartialEquivalence_16)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsEquivalence_26 -> T_IsPartialEquivalence_16
MAlonzo.Code.Relation.Binary.Structures.du_isPartialEquivalence_42
                     ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                        T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                        (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v5)))))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.Eq.refl
d_refl_884 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny
d_refl_884 :: () -> () -> () -> T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny
d_refl_884 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny
du_refl_884 T_HeytingAlgebra_750
v3
du_refl_884 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny
du_refl_884 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny
du_refl_884 T_HeytingAlgebra_750
v0
  = (T_IsEquivalence_26 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
               ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                  ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
                     ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0)))))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.Eq.reflexive
d_reflexive_886 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  AgdaAny ->
  AgdaAny ->
  MAlonzo.Code.Agda.Builtin.Equality.T__'8801'__12 -> AgdaAny
d_reflexive_886 :: ()
-> ()
-> ()
-> T_HeytingAlgebra_750
-> AgdaAny
-> AgdaAny
-> T__'8801'__12
-> AgdaAny
d_reflexive_886 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
du_reflexive_886 T_HeytingAlgebra_750
v3
du_reflexive_886 ::
  T_HeytingAlgebra_750 ->
  AgdaAny ->
  AgdaAny ->
  MAlonzo.Code.Agda.Builtin.Equality.T__'8801'__12 -> AgdaAny
du_reflexive_886 :: T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
du_reflexive_886 T_HeytingAlgebra_750
v0
  = let v1 :: t
v1 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: T_IsBoundedLattice_502
v2 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsLattice_340
v3
                = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                    (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsPartialOrder_174
v4
                   = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                       (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               (let v5 :: T_IsPreorder_70
v5
                      = T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                          (T_IsPartialOrder_174 -> T_IsPartialOrder_174
forall a b. a -> b
coe T_IsPartialOrder_174
v4) in
                (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny
forall a b. a -> b
coe
                  (\ AgdaAny
v6 AgdaAny
v7 AgdaAny
v8 ->
                     (T_IsEquivalence_26 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                       T_IsEquivalence_26 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_reflexive_40
                       ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                          T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                          (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v5))
                       AgdaAny
v6)))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.Eq.sym
d_sym_888 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_sym_888 :: ()
-> ()
-> ()
-> T_HeytingAlgebra_750
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_sym_888 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_sym_888 T_HeytingAlgebra_750
v3
du_sym_888 ::
  T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_sym_888 :: T_HeytingAlgebra_750 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_sym_888 T_HeytingAlgebra_750
v0
  = (T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
               ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                  ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
                     ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0)))))))
-- Relation.Binary.Lattice.Bundles.HeytingAlgebra._.Eq.trans
d_trans_890 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_890 :: ()
-> ()
-> ()
-> T_HeytingAlgebra_750
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_trans_890 ~()
v0 ~()
v1 ~()
v2 T_HeytingAlgebra_750
v3 = T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_890 T_HeytingAlgebra_750
v3
du_trans_890 ::
  T_HeytingAlgebra_750 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_890 :: T_HeytingAlgebra_750
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_890 T_HeytingAlgebra_750
v0
  = (T_IsEquivalence_26
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
forall a b. a -> b
coe
      T_IsEquivalence_26
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_38
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
               ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                  ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
                     ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (T_HeytingAlgebra_750 -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750
v0)))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra
d_BooleanAlgebra_898 :: p -> p -> p -> ()
d_BooleanAlgebra_898 p
a0 p
a1 p
a2 = ()
data T_BooleanAlgebra_898
  = C_BooleanAlgebra'46'constructor_22683 (AgdaAny ->
                                           AgdaAny -> AgdaAny)
                                          (AgdaAny -> AgdaAny -> AgdaAny) (AgdaAny -> AgdaAny)
                                          AgdaAny AgdaAny
                                          MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBooleanAlgebra_730
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra.Carrier
d_Carrier_924 :: T_BooleanAlgebra_898 -> ()
d_Carrier_924 :: T_BooleanAlgebra_898 -> ()
d_Carrier_924 = T_BooleanAlgebra_898 -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._≈_
d__'8776'__926 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> ()
d__'8776'__926 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> ()
d__'8776'__926 = T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._≤_
d__'8804'__928 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> ()
d__'8804'__928 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> ()
d__'8804'__928 = T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> ()
forall a. a
erased
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._∨_
d__'8744'__930 ::
  T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__930 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__930 T_BooleanAlgebra_898
v0
  = case T_BooleanAlgebra_898 -> T_BooleanAlgebra_898
forall a b. a -> b
coe T_BooleanAlgebra_898
v0 of
      C_BooleanAlgebra'46'constructor_22683 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny -> AgdaAny
v6 AgdaAny
v7 AgdaAny
v8 T_IsBooleanAlgebra_730
v9 -> (AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny
v4
      T_BooleanAlgebra_898
_ -> AgdaAny -> AgdaAny -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._∧_
d__'8743'__932 ::
  T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__932 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__932 T_BooleanAlgebra_898
v0
  = case T_BooleanAlgebra_898 -> T_BooleanAlgebra_898
forall a b. a -> b
coe T_BooleanAlgebra_898
v0 of
      C_BooleanAlgebra'46'constructor_22683 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny -> AgdaAny
v6 AgdaAny
v7 AgdaAny
v8 T_IsBooleanAlgebra_730
v9 -> (AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny -> AgdaAny
v5
      T_BooleanAlgebra_898
_ -> AgdaAny -> AgdaAny -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra.¬_
d_'172'__934 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
d_'172'__934 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
d_'172'__934 T_BooleanAlgebra_898
v0
  = case T_BooleanAlgebra_898 -> T_BooleanAlgebra_898
forall a b. a -> b
coe T_BooleanAlgebra_898
v0 of
      C_BooleanAlgebra'46'constructor_22683 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny -> AgdaAny
v6 AgdaAny
v7 AgdaAny
v8 T_IsBooleanAlgebra_730
v9 -> (AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny -> AgdaAny
v6
      T_BooleanAlgebra_898
_ -> AgdaAny -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra.⊤
d_'8868'_936 :: T_BooleanAlgebra_898 -> AgdaAny
d_'8868'_936 :: T_BooleanAlgebra_898 -> AgdaAny
d_'8868'_936 T_BooleanAlgebra_898
v0
  = case T_BooleanAlgebra_898 -> T_BooleanAlgebra_898
forall a b. a -> b
coe T_BooleanAlgebra_898
v0 of
      C_BooleanAlgebra'46'constructor_22683 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny -> AgdaAny
v6 AgdaAny
v7 AgdaAny
v8 T_IsBooleanAlgebra_730
v9 -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v7
      T_BooleanAlgebra_898
_ -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra.⊥
d_'8869'_938 :: T_BooleanAlgebra_898 -> AgdaAny
d_'8869'_938 :: T_BooleanAlgebra_898 -> AgdaAny
d_'8869'_938 T_BooleanAlgebra_898
v0
  = case T_BooleanAlgebra_898 -> T_BooleanAlgebra_898
forall a b. a -> b
coe T_BooleanAlgebra_898
v0 of
      C_BooleanAlgebra'46'constructor_22683 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny -> AgdaAny
v6 AgdaAny
v7 AgdaAny
v8 T_IsBooleanAlgebra_730
v9 -> AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
v8
      T_BooleanAlgebra_898
_ -> AgdaAny
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra.isBooleanAlgebra
d_isBooleanAlgebra_940 ::
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBooleanAlgebra_730
d_isBooleanAlgebra_940 :: T_BooleanAlgebra_898 -> T_IsBooleanAlgebra_730
d_isBooleanAlgebra_940 T_BooleanAlgebra_898
v0
  = case T_BooleanAlgebra_898 -> T_BooleanAlgebra_898
forall a b. a -> b
coe T_BooleanAlgebra_898
v0 of
      C_BooleanAlgebra'46'constructor_22683 AgdaAny -> AgdaAny -> AgdaAny
v4 AgdaAny -> AgdaAny -> AgdaAny
v5 AgdaAny -> AgdaAny
v6 AgdaAny
v7 AgdaAny
v8 T_IsBooleanAlgebra_730
v9 -> T_IsBooleanAlgebra_730 -> T_IsBooleanAlgebra_730
forall a b. a -> b
coe T_IsBooleanAlgebra_730
v9
      T_BooleanAlgebra_898
_ -> T_IsBooleanAlgebra_730
forall a. a
MAlonzo.RTE.mazUnreachableError
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra.heytingAlgebra
d_heytingAlgebra_946 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
d_heytingAlgebra_946 :: () -> () -> () -> T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
d_heytingAlgebra_946 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 T_BooleanAlgebra_898
v3
du_heytingAlgebra_946 ::
  T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 :: T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 T_BooleanAlgebra_898
v0
  = ((AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny)
 -> (AgdaAny -> AgdaAny -> AgdaAny)
 -> AgdaAny
 -> AgdaAny
 -> T_IsHeytingAlgebra_598
 -> T_HeytingAlgebra_750)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> T_IsHeytingAlgebra_598
-> T_HeytingAlgebra_750
forall a b. a -> b
coe
      (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> (AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny
-> AgdaAny
-> T_IsHeytingAlgebra_598
-> T_HeytingAlgebra_750
C_HeytingAlgebra'46'constructor_18655 (T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__930 (T_BooleanAlgebra_898 -> T_BooleanAlgebra_898
forall a b. a -> b
coe T_BooleanAlgebra_898
v0))
      (T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8743'__932 (T_BooleanAlgebra_898 -> T_BooleanAlgebra_898
forall a b. a -> b
coe T_BooleanAlgebra_898
v0))
      (\ AgdaAny
v1 -> (T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__930 T_BooleanAlgebra_898
v0 ((T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny)
-> T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
d_'172'__934 T_BooleanAlgebra_898
v0 AgdaAny
v1))
      (T_BooleanAlgebra_898 -> AgdaAny
d_'8868'_936 (T_BooleanAlgebra_898 -> T_BooleanAlgebra_898
forall a b. a -> b
coe T_BooleanAlgebra_898
v0)) (T_BooleanAlgebra_898 -> AgdaAny
d_'8869'_938 (T_BooleanAlgebra_898 -> T_BooleanAlgebra_898
forall a b. a -> b
coe T_BooleanAlgebra_898
v0))
      (T_IsBooleanAlgebra_730 -> T_IsHeytingAlgebra_598
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isHeytingAlgebra_756
         ((T_BooleanAlgebra_898 -> T_IsBooleanAlgebra_730)
-> AgdaAny -> T_IsBooleanAlgebra_730
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_IsBooleanAlgebra_730
d_isBooleanAlgebra_940 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0)))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._._⇨_
d__'8680'__950 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8680'__950 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> AgdaAny
-> AgdaAny
-> AgdaAny
d__'8680'__950 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 AgdaAny
v4 = T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
du__'8680'__950 T_BooleanAlgebra_898
v3 AgdaAny
v4
du__'8680'__950 ::
  T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
du__'8680'__950 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
du__'8680'__950 T_BooleanAlgebra_898
v0 AgdaAny
v1
  = (T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny)
-> T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
d__'8744'__930 T_BooleanAlgebra_898
v0 ((T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny)
-> T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
d_'172'__934 T_BooleanAlgebra_898
v0 AgdaAny
v1)
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.antisym
d_antisym_952 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_antisym_952 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_antisym_952 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_antisym_952 T_BooleanAlgebra_898
v3
du_antisym_952 ::
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_antisym_952 :: T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_antisym_952 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsPartialOrder_174
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_antisym_184
         ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
            ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
               ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
                  ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.boundedJoinSemilattice
d_boundedJoinSemilattice_954 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 -> T_BoundedJoinSemilattice_102
d_boundedJoinSemilattice_954 :: ()
-> () -> () -> T_BooleanAlgebra_898 -> T_BoundedJoinSemilattice_102
d_boundedJoinSemilattice_954 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3
  = T_BooleanAlgebra_898 -> T_BoundedJoinSemilattice_102
du_boundedJoinSemilattice_954 T_BooleanAlgebra_898
v3
du_boundedJoinSemilattice_954 ::
  T_BooleanAlgebra_898 -> T_BoundedJoinSemilattice_102
du_boundedJoinSemilattice_954 :: T_BooleanAlgebra_898 -> T_BoundedJoinSemilattice_102
du_boundedJoinSemilattice_954 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> T_BoundedJoinSemilattice_102
forall a b. a -> b
coe
      ((T_BoundedLattice_616 -> T_BoundedJoinSemilattice_102)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_BoundedLattice_616 -> T_BoundedJoinSemilattice_102
du_boundedJoinSemilattice_726 ((T_HeytingAlgebra_750 -> T_BoundedLattice_616)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.boundedLattice
d_boundedLattice_956 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 -> T_BoundedLattice_616
d_boundedLattice_956 :: () -> () -> () -> T_BooleanAlgebra_898 -> T_BoundedLattice_616
d_boundedLattice_956 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> T_BoundedLattice_616
du_boundedLattice_956 T_BooleanAlgebra_898
v3
du_boundedLattice_956 ::
  T_BooleanAlgebra_898 -> T_BoundedLattice_616
du_boundedLattice_956 :: T_BooleanAlgebra_898 -> T_BoundedLattice_616
du_boundedLattice_956 T_BooleanAlgebra_898
v0
  = (T_HeytingAlgebra_750 -> T_BoundedLattice_616)
-> AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 ((T_BooleanAlgebra_898 -> T_HeytingAlgebra_750)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.boundedMeetSemilattice
d_boundedMeetSemilattice_958 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 -> T_BoundedMeetSemilattice_288
d_boundedMeetSemilattice_958 :: ()
-> () -> () -> T_BooleanAlgebra_898 -> T_BoundedMeetSemilattice_288
d_boundedMeetSemilattice_958 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3
  = T_BooleanAlgebra_898 -> T_BoundedMeetSemilattice_288
du_boundedMeetSemilattice_958 T_BooleanAlgebra_898
v3
du_boundedMeetSemilattice_958 ::
  T_BooleanAlgebra_898 -> T_BoundedMeetSemilattice_288
du_boundedMeetSemilattice_958 :: T_BooleanAlgebra_898 -> T_BoundedMeetSemilattice_288
du_boundedMeetSemilattice_958 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> T_BoundedMeetSemilattice_288
forall a b. a -> b
coe
      ((T_BoundedLattice_616 -> T_BoundedMeetSemilattice_288)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_BoundedLattice_616 -> T_BoundedMeetSemilattice_288
du_boundedMeetSemilattice_728 ((T_HeytingAlgebra_750 -> T_BoundedLattice_616)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.exponential
d_exponential_960 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  AgdaAny ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_exponential_960 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> T_Σ_14
d_exponential_960 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
du_exponential_960 T_BooleanAlgebra_898
v3
du_exponential_960 ::
  T_BooleanAlgebra_898 ->
  AgdaAny ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_exponential_960 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
du_exponential_960 T_BooleanAlgebra_898
v0
  = (T_IsHeytingAlgebra_598 -> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14)
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      T_IsHeytingAlgebra_598 -> AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_exponential_616
      ((T_IsBooleanAlgebra_730 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsBooleanAlgebra_730 -> T_IsHeytingAlgebra_598
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isHeytingAlgebra_756
         ((T_BooleanAlgebra_898 -> T_IsBooleanAlgebra_730)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_IsBooleanAlgebra_730
d_isBooleanAlgebra_940 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0)))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.infimum
d_infimum_962 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_infimum_962 :: ()
-> () -> () -> T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> T_Σ_14
d_infimum_962 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> T_Σ_14
du_infimum_962 T_BooleanAlgebra_898
v3
du_infimum_962 ::
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_infimum_962 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> T_Σ_14
du_infimum_962 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      ((T_IsLattice_340 -> AgdaAny -> AgdaAny -> T_Σ_14)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsLattice_340 -> AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_infimum_356
         ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
            ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
               ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.isBoundedJoinSemilattice
d_isBoundedJoinSemilattice_964 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_964 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> T_IsBoundedJoinSemilattice_116
d_isBoundedJoinSemilattice_964 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3
  = T_BooleanAlgebra_898 -> T_IsBoundedJoinSemilattice_116
du_isBoundedJoinSemilattice_964 T_BooleanAlgebra_898
v3
du_isBoundedJoinSemilattice_964 ::
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedJoinSemilattice_116
du_isBoundedJoinSemilattice_964 :: T_BooleanAlgebra_898 -> T_IsBoundedJoinSemilattice_116
du_isBoundedJoinSemilattice_964 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> T_IsBoundedJoinSemilattice_116
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsBoundedLattice_502 -> T_IsBoundedJoinSemilattice_116)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedLattice_502 -> T_IsBoundedJoinSemilattice_116
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isBoundedJoinSemilattice_584
            ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v2))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.isBoundedLattice
d_isBoundedLattice_966 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedLattice_502
d_isBoundedLattice_966 :: () -> () -> () -> T_BooleanAlgebra_898 -> T_IsBoundedLattice_502
d_isBoundedLattice_966 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> T_IsBoundedLattice_502
du_isBoundedLattice_966 T_BooleanAlgebra_898
v3
du_isBoundedLattice_966 ::
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedLattice_502
du_isBoundedLattice_966 :: T_BooleanAlgebra_898 -> T_IsBoundedLattice_502
du_isBoundedLattice_966 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> T_IsBoundedLattice_502
forall a b. a -> b
coe
      ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
         ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.isBoundedMeetSemilattice
d_isBoundedMeetSemilattice_968 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_968 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> T_IsBoundedMeetSemilattice_274
d_isBoundedMeetSemilattice_968 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3
  = T_BooleanAlgebra_898 -> T_IsBoundedMeetSemilattice_274
du_isBoundedMeetSemilattice_968 T_BooleanAlgebra_898
v3
du_isBoundedMeetSemilattice_968 ::
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsBoundedMeetSemilattice_274
du_isBoundedMeetSemilattice_968 :: T_BooleanAlgebra_898 -> T_IsBoundedMeetSemilattice_274
du_isBoundedMeetSemilattice_968 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> T_IsBoundedMeetSemilattice_274
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         ((T_IsBoundedLattice_502 -> T_IsBoundedMeetSemilattice_274)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedLattice_502 -> T_IsBoundedMeetSemilattice_274
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isBoundedMeetSemilattice_586
            ((T_BoundedLattice_616 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v2))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.isEquivalence
d_isEquivalence_970 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsEquivalence_26
d_isEquivalence_970 :: () -> () -> () -> T_BooleanAlgebra_898 -> T_IsEquivalence_26
d_isEquivalence_970 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> T_IsEquivalence_26
du_isEquivalence_970 T_BooleanAlgebra_898
v3
du_isEquivalence_970 ::
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsEquivalence_26
du_isEquivalence_970 :: T_BooleanAlgebra_898 -> T_IsEquivalence_26
du_isEquivalence_970 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> T_IsEquivalence_26
forall a b. a -> b
coe
      ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
               ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                  ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
                     ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.isHeytingAlgebra
d_isHeytingAlgebra_972 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsHeytingAlgebra_598
d_isHeytingAlgebra_972 :: () -> () -> () -> T_BooleanAlgebra_898 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_972 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> T_IsHeytingAlgebra_598
du_isHeytingAlgebra_972 T_BooleanAlgebra_898
v3
du_isHeytingAlgebra_972 ::
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsHeytingAlgebra_598
du_isHeytingAlgebra_972 :: T_BooleanAlgebra_898 -> T_IsHeytingAlgebra_598
du_isHeytingAlgebra_972 T_BooleanAlgebra_898
v0
  = (T_IsBooleanAlgebra_730 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> T_IsHeytingAlgebra_598
forall a b. a -> b
coe
      T_IsBooleanAlgebra_730 -> T_IsHeytingAlgebra_598
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isHeytingAlgebra_756
      ((T_BooleanAlgebra_898 -> T_IsBooleanAlgebra_730)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_IsBooleanAlgebra_730
d_isBooleanAlgebra_940 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.isJoinSemilattice
d_isJoinSemilattice_974 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsJoinSemilattice_22
d_isJoinSemilattice_974 :: () -> () -> () -> T_BooleanAlgebra_898 -> T_IsJoinSemilattice_22
d_isJoinSemilattice_974 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3
  = T_BooleanAlgebra_898 -> T_IsJoinSemilattice_22
du_isJoinSemilattice_974 T_BooleanAlgebra_898
v3
du_isJoinSemilattice_974 ::
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsJoinSemilattice_22
du_isJoinSemilattice_974 :: T_BooleanAlgebra_898 -> T_IsJoinSemilattice_22
du_isJoinSemilattice_974 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> T_IsJoinSemilattice_22
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsBoundedLattice_502
v3 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsLattice_340 -> T_IsJoinSemilattice_22) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
               ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                  (T_IsBoundedLattice_502 -> AgdaAny
forall a b. a -> b
coe T_IsBoundedLattice_502
v3)))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.isLattice
d_isLattice_976 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsLattice_340
d_isLattice_976 :: () -> () -> () -> T_BooleanAlgebra_898 -> T_IsLattice_340
d_isLattice_976 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> T_IsLattice_340
du_isLattice_976 T_BooleanAlgebra_898
v3
du_isLattice_976 ::
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsLattice_340
du_isLattice_976 :: T_BooleanAlgebra_898 -> T_IsLattice_340
du_isLattice_976 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> T_IsLattice_340
forall a b. a -> b
coe
      ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
         ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
            ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.isMeetSemilattice
d_isMeetSemilattice_978 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsMeetSemilattice_180
d_isMeetSemilattice_978 :: () -> () -> () -> T_BooleanAlgebra_898 -> T_IsMeetSemilattice_180
d_isMeetSemilattice_978 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3
  = T_BooleanAlgebra_898 -> T_IsMeetSemilattice_180
du_isMeetSemilattice_978 T_BooleanAlgebra_898
v3
du_isMeetSemilattice_978 ::
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Lattice.Structures.T_IsMeetSemilattice_180
du_isMeetSemilattice_978 :: T_BooleanAlgebra_898 -> T_IsMeetSemilattice_180
du_isMeetSemilattice_978 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> T_IsMeetSemilattice_180
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsBoundedLattice_502
v3 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            ((T_IsLattice_340 -> T_IsMeetSemilattice_180) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
               ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                  (T_IsBoundedLattice_502 -> AgdaAny
forall a b. a -> b
coe T_IsBoundedLattice_502
v3)))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.isPartialOrder
d_isPartialOrder_980 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialOrder_174
d_isPartialOrder_980 :: () -> () -> () -> T_BooleanAlgebra_898 -> T_IsPartialOrder_174
d_isPartialOrder_980 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> T_IsPartialOrder_174
du_isPartialOrder_980 T_BooleanAlgebra_898
v3
du_isPartialOrder_980 ::
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialOrder_174
du_isPartialOrder_980 :: T_BooleanAlgebra_898 -> T_IsPartialOrder_174
du_isPartialOrder_980 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> T_IsPartialOrder_174
forall a b. a -> b
coe
      ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
         ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
            ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
               ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.isPreorder
d_isPreorder_982 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPreorder_70
d_isPreorder_982 :: () -> () -> () -> T_BooleanAlgebra_898 -> T_IsPreorder_70
d_isPreorder_982 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> T_IsPreorder_70
du_isPreorder_982 T_BooleanAlgebra_898
v3
du_isPreorder_982 ::
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPreorder_70
du_isPreorder_982 :: T_BooleanAlgebra_898 -> T_IsPreorder_70
du_isPreorder_982 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> T_IsPreorder_70
forall a b. a -> b
coe
      ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
         ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
            ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
               ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
                  ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.joinSemilattice
d_joinSemilattice_984 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 -> T_JoinSemilattice_14
d_joinSemilattice_984 :: () -> () -> () -> T_BooleanAlgebra_898 -> T_JoinSemilattice_14
d_joinSemilattice_984 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> T_JoinSemilattice_14
du_joinSemilattice_984 T_BooleanAlgebra_898
v3
du_joinSemilattice_984 ::
  T_BooleanAlgebra_898 -> T_JoinSemilattice_14
du_joinSemilattice_984 :: T_BooleanAlgebra_898 -> T_JoinSemilattice_14
du_joinSemilattice_984 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> T_JoinSemilattice_14
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe ((T_Lattice_386 -> T_JoinSemilattice_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_JoinSemilattice_14
du_joinSemilattice_480 ((T_BoundedLattice_616 -> T_Lattice_386) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_Lattice_386
du_lattice_730 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v2))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.lattice
d_lattice_986 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 -> T_Lattice_386
d_lattice_986 :: () -> () -> () -> T_BooleanAlgebra_898 -> T_Lattice_386
d_lattice_986 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> T_Lattice_386
du_lattice_986 T_BooleanAlgebra_898
v3
du_lattice_986 :: T_BooleanAlgebra_898 -> T_Lattice_386
du_lattice_986 :: T_BooleanAlgebra_898 -> T_Lattice_386
du_lattice_986 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> T_Lattice_386
forall a b. a -> b
coe ((T_BoundedLattice_616 -> T_Lattice_386) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_Lattice_386
du_lattice_730 ((T_HeytingAlgebra_750 -> T_BoundedLattice_616)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.maximum
d_maximum_988 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
d_maximum_988 :: () -> () -> () -> T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
d_maximum_988 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
du_maximum_988 T_BooleanAlgebra_898
v3
du_maximum_988 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
du_maximum_988 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
du_maximum_988 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsBoundedLattice_502 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsBoundedLattice_502 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_maximum_520
         ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
            ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.meetSemilattice
d_meetSemilattice_990 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 -> T_MeetSemilattice_200
d_meetSemilattice_990 :: () -> () -> () -> T_BooleanAlgebra_898 -> T_MeetSemilattice_200
d_meetSemilattice_990 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> T_MeetSemilattice_200
du_meetSemilattice_990 T_BooleanAlgebra_898
v3
du_meetSemilattice_990 ::
  T_BooleanAlgebra_898 -> T_MeetSemilattice_200
du_meetSemilattice_990 :: T_BooleanAlgebra_898 -> T_MeetSemilattice_200
du_meetSemilattice_990 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> T_MeetSemilattice_200
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe ((T_Lattice_386 -> T_MeetSemilattice_200) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_MeetSemilattice_200
du_meetSemilattice_482 ((T_BoundedLattice_616 -> T_Lattice_386) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_Lattice_386
du_lattice_730 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v2))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.minimum
d_minimum_992 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
d_minimum_992 :: () -> () -> () -> T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
d_minimum_992 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
du_minimum_992 T_BooleanAlgebra_898
v3
du_minimum_992 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
du_minimum_992 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
du_minimum_992 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsBoundedLattice_502 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsBoundedLattice_502 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_minimum_522
         ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
            ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.poset
d_poset_994 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314
d_poset_994 :: () -> () -> () -> T_BooleanAlgebra_898 -> T_Poset_314
d_poset_994 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> T_Poset_314
du_poset_994 T_BooleanAlgebra_898
v3
du_poset_994 ::
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Poset_314
du_poset_994 :: T_BooleanAlgebra_898 -> T_Poset_314
du_poset_994 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> T_Poset_314
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: t
v3 = (T_BoundedLattice_616 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_BoundedLattice_616 -> T_Lattice_386
du_lattice_730 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe ((T_JoinSemilattice_14 -> T_Poset_314) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_Poset_314
du_poset_90 ((T_Lattice_386 -> T_JoinSemilattice_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_JoinSemilattice_14
du_joinSemilattice_480 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v3)))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.preorder
d_preorder_996 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132
d_preorder_996 :: () -> () -> () -> T_BooleanAlgebra_898 -> T_Preorder_132
d_preorder_996 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> T_Preorder_132
du_preorder_996 T_BooleanAlgebra_898
v3
du_preorder_996 ::
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Preorder_132
du_preorder_996 :: T_BooleanAlgebra_898 -> T_Preorder_132
du_preorder_996 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> T_Preorder_132
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: t
v3 = (T_BoundedLattice_616 -> T_Lattice_386) -> AgdaAny -> t
forall a b. a -> b
coe T_BoundedLattice_616 -> T_Lattice_386
du_lattice_730 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: t
v4 = (T_Lattice_386 -> T_JoinSemilattice_14) -> AgdaAny -> t
forall a b. a -> b
coe T_Lattice_386 -> T_JoinSemilattice_14
du_joinSemilattice_480 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               ((T_Poset_314 -> T_Preorder_132) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_Poset_314 -> T_Preorder_132
MAlonzo.Code.Relation.Binary.Bundles.du_preorder_344
                  ((T_JoinSemilattice_14 -> T_Poset_314) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_JoinSemilattice_14 -> T_Poset_314
du_poset_90 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v4))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.refl
d_refl_998 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
d_refl_998 :: () -> () -> () -> T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
d_refl_998 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
du_refl_998 T_BooleanAlgebra_898
v3
du_refl_998 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
du_refl_998 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
du_refl_998 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsBoundedLattice_502
v3 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsLattice_340
v4
                   = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                       (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               (let v5 :: T_IsPartialOrder_174
v5
                      = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                          (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v4) in
                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  ((T_IsPreorder_70 -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsPreorder_70 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_refl_98
                     ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                        T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                        (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v5)))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.reflexive
d_reflexive_1000 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_reflexive_1000 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_reflexive_1000 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_reflexive_1000 T_BooleanAlgebra_898
v3
du_reflexive_1000 ::
  T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_reflexive_1000 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_reflexive_1000 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsPreorder_70 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_reflexive_82
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
               ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                  ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
                     ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.setoid
d_setoid_1002 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Setoid_44
d_setoid_1002 :: () -> () -> () -> T_BooleanAlgebra_898 -> T_Setoid_44
d_setoid_1002 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> T_Setoid_44
du_setoid_1002 T_BooleanAlgebra_898
v3
du_setoid_1002 ::
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Bundles.T_Setoid_44
du_setoid_1002 :: T_BooleanAlgebra_898 -> T_Setoid_44
du_setoid_1002 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> T_Setoid_44
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe ((T_Lattice_386 -> T_Setoid_44) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_Lattice_386 -> T_Setoid_44
du_setoid_478 ((T_BoundedLattice_616 -> T_Lattice_386) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_BoundedLattice_616 -> T_Lattice_386
du_lattice_730 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v2))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.supremum
d_supremum_1004 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_supremum_1004 :: ()
-> () -> () -> T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> T_Σ_14
d_supremum_1004 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> T_Σ_14
du_supremum_1004 T_BooleanAlgebra_898
v3
du_supremum_1004 ::
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_supremum_1004 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> T_Σ_14
du_supremum_1004 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      ((T_IsLattice_340 -> AgdaAny -> AgdaAny -> T_Σ_14)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsLattice_340 -> AgdaAny -> AgdaAny -> T_Σ_14
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_supremum_354
         ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
            ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
               ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.trans
d_trans_1006 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_1006 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_trans_1006 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_1006 T_BooleanAlgebra_898
v3
du_trans_1006 ::
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_1006 :: T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_1006 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_84
         ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
            ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
               ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                  ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
                     ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.transpose-⇨
d_transpose'45''8680'_1008 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_transpose'45''8680'_1008 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_transpose'45''8680'_1008 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3
  = T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_transpose'45''8680'_1008 T_BooleanAlgebra_898
v3
du_transpose'45''8680'_1008 ::
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_transpose'45''8680'_1008 :: T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_transpose'45''8680'_1008 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsHeytingAlgebra_598
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsHeytingAlgebra_598
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_transpose'45''8680'_624
         ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.transpose-∧
d_transpose'45''8743'_1010 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_transpose'45''8743'_1010 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_transpose'45''8743'_1010 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3
  = T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_transpose'45''8743'_1010 T_BooleanAlgebra_898
v3
du_transpose'45''8743'_1010 ::
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_transpose'45''8743'_1010 :: T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_transpose'45''8743'_1010 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsHeytingAlgebra_598
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsHeytingAlgebra_598
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_transpose'45''8743'_640
         ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1)))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.x∧y≤x
d_x'8743'y'8804'x_1012 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8743'y'8804'x_1012 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8743'y'8804'x_1012 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_1012 T_BooleanAlgebra_898
v3
du_x'8743'y'8804'x_1012 ::
  T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_1012 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'x_1012 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsBoundedLattice_502
v3 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsLattice_340
v4
                   = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                       (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               ((T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8743'y'8804'x_196
                  ((T_IsLattice_340 -> T_IsMeetSemilattice_180) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
                     (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v4))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.x∧y≤y
d_x'8743'y'8804'y_1014 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8743'y'8804'y_1014 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8743'y'8804'y_1014 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_1014 T_BooleanAlgebra_898
v3
du_x'8743'y'8804'y_1014 ::
  T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_1014 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8743'y'8804'y_1014 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsBoundedLattice_502
v3 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsLattice_340
v4
                   = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                       (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               ((T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsMeetSemilattice_180 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8743'y'8804'y_208
                  ((T_IsLattice_340 -> T_IsMeetSemilattice_180) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
                     (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v4))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.x≤x∨y
d_x'8804'x'8744'y_1016 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
d_x'8804'x'8744'y_1016 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_x'8804'x'8744'y_1016 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_1016 T_BooleanAlgebra_898
v3
du_x'8804'x'8744'y_1016 ::
  T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_1016 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
du_x'8804'x'8744'y_1016 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsBoundedLattice_502
v3 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsLattice_340
v4
                   = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                       (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               ((T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_x'8804'x'8744'y_38
                  ((T_IsLattice_340 -> T_IsJoinSemilattice_22) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
                     (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v4))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.y≤x∨y
d_y'8804'x'8744'y_1018 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
d_y'8804'x'8744'y_1018 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_y'8804'x'8744'y_1018 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_1018 T_BooleanAlgebra_898
v3
du_y'8804'x'8744'y_1018 ::
  T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_1018 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny
du_y'8804'x'8744'y_1018 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsBoundedLattice_502
v3 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsLattice_340
v4
                   = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                       (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               ((T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsJoinSemilattice_22 -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_y'8804'x'8744'y_50
                  ((T_IsLattice_340 -> T_IsJoinSemilattice_22) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
                     (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v4))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.∧-greatest
d_'8743''45'greatest_1020 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8743''45'greatest_1020 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8743''45'greatest_1020 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3
  = T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_1020 T_BooleanAlgebra_898
v3
du_'8743''45'greatest_1020 ::
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_1020 :: T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8743''45'greatest_1020 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsBoundedLattice_502
v3 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsLattice_340
v4
                   = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                       (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               ((T_IsMeetSemilattice_180
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsMeetSemilattice_180
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_'8743''45'greatest_222
                  ((T_IsLattice_340 -> T_IsMeetSemilattice_180) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsLattice_340 -> T_IsMeetSemilattice_180
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isMeetSemilattice_360
                     (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v4))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.∨-least
d_'8744''45'least_1022 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8744''45'least_1022 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8744''45'least_1022 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_1022 T_BooleanAlgebra_898
v3
du_'8744''45'least_1022 ::
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_1022 :: T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8744''45'least_1022 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsBoundedLattice_502
v3 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsLattice_340
v4
                   = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                       (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               ((T_IsJoinSemilattice_22
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsJoinSemilattice_22
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_'8744''45'least_64
                  ((T_IsLattice_340 -> T_IsJoinSemilattice_22) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsLattice_340 -> T_IsJoinSemilattice_22
MAlonzo.Code.Relation.Binary.Lattice.Structures.du_isJoinSemilattice_358
                     (T_IsLattice_340 -> AgdaAny
forall a b. a -> b
coe T_IsLattice_340
v4))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.∼-resp-≈
d_'8764''45'resp'45''8776'_1024 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8764''45'resp'45''8776'_1024 :: () -> () -> () -> T_BooleanAlgebra_898 -> T_Σ_14
d_'8764''45'resp'45''8776'_1024 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3
  = T_BooleanAlgebra_898 -> T_Σ_14
du_'8764''45'resp'45''8776'_1024 T_BooleanAlgebra_898
v3
du_'8764''45'resp'45''8776'_1024 ::
  T_BooleanAlgebra_898 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8764''45'resp'45''8776'_1024 :: T_BooleanAlgebra_898 -> T_Σ_14
du_'8764''45'resp'45''8776'_1024 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsBoundedLattice_502
v3 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsLattice_340
v4
                   = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                       (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               (let v5 :: T_IsPartialOrder_174
v5
                      = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                          (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v4) in
                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  ((T_IsPreorder_70 -> T_Σ_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsPreorder_70 -> T_Σ_14
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'45''8776'_118
                     ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                        T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                        (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v5)))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.∼-respʳ-≈
d_'8764''45'resp'691''45''8776'_1026 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8764''45'resp'691''45''8776'_1026 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8764''45'resp'691''45''8776'_1026 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3
  = T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_1026 T_BooleanAlgebra_898
v3
du_'8764''45'resp'691''45''8776'_1026 ::
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_1026 :: T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'691''45''8776'_1026 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsBoundedLattice_502
v3 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsLattice_340
v4
                   = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                       (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               (let v5 :: T_IsPartialOrder_174
v5
                      = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                          (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v4) in
                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'691''45''8776'_116
                     ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                        T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                        (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v5)))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.∼-respˡ-≈
d_'8764''45'resp'737''45''8776'_1028 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8764''45'resp'737''45''8776'_1028 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8764''45'resp'737''45''8776'_1028 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3
  = T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_1028 T_BooleanAlgebra_898
v3
du_'8764''45'resp'737''45''8776'_1028 ::
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_1028 :: T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8764''45'resp'737''45''8776'_1028 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsBoundedLattice_502
v3 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsLattice_340
v4
                   = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                       (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               (let v5 :: T_IsPartialOrder_174
v5
                      = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                          (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v4) in
                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8764''45'resp'737''45''8776'_114
                     ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                        T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                        (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v5)))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.≲-resp-≈
d_'8818''45'resp'45''8776'_1030 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
d_'8818''45'resp'45''8776'_1030 :: () -> () -> () -> T_BooleanAlgebra_898 -> T_Σ_14
d_'8818''45'resp'45''8776'_1030 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3
  = T_BooleanAlgebra_898 -> T_Σ_14
du_'8818''45'resp'45''8776'_1030 T_BooleanAlgebra_898
v3
du_'8818''45'resp'45''8776'_1030 ::
  T_BooleanAlgebra_898 -> MAlonzo.Code.Agda.Builtin.Sigma.T_Σ_14
du_'8818''45'resp'45''8776'_1030 :: T_BooleanAlgebra_898 -> T_Σ_14
du_'8818''45'resp'45''8776'_1030 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> T_Σ_14
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsBoundedLattice_502
v3 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsLattice_340
v4
                   = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                       (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               (let v5 :: T_IsPartialOrder_174
v5
                      = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                          (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v4) in
                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  ((T_IsPreorder_70 -> T_Σ_14) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsPreorder_70 -> T_Σ_14
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'45''8776'_112
                     ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                        T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                        (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v5)))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.≲-respʳ-≈
d_'8818''45'resp'691''45''8776'_1032 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8818''45'resp'691''45''8776'_1032 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8818''45'resp'691''45''8776'_1032 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3
  = T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_1032 T_BooleanAlgebra_898
v3
du_'8818''45'resp'691''45''8776'_1032 ::
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_1032 :: T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'691''45''8776'_1032 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsBoundedLattice_502
v3 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsLattice_340
v4
                   = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                       (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               (let v5 :: T_IsPartialOrder_174
v5
                      = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                          (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v4) in
                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'691''45''8776'_106
                     ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                        T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                        (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v5)))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.≲-respˡ-≈
d_'8818''45'resp'737''45''8776'_1034 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_'8818''45'resp'737''45''8776'_1034 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_'8818''45'resp'737''45''8776'_1034 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3
  = T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_1034 T_BooleanAlgebra_898
v3
du_'8818''45'resp'737''45''8776'_1034 ::
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_1034 :: T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_'8818''45'resp'737''45''8776'_1034 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsBoundedLattice_502
v3 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsLattice_340
v4
                   = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                       (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               (let v5 :: T_IsPartialOrder_174
v5
                      = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                          (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v4) in
                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  ((T_IsPreorder_70
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsPreorder_70
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_'8818''45'resp'737''45''8776'_100
                     ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                        T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                        (T_IsPartialOrder_174 -> AgdaAny
forall a b. a -> b
coe T_IsPartialOrder_174
v5)))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.Eq.isPartialEquivalence
d_isPartialEquivalence_1038 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialEquivalence_16
d_isPartialEquivalence_1038 :: () -> () -> () -> T_BooleanAlgebra_898 -> T_IsPartialEquivalence_16
d_isPartialEquivalence_1038 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3
  = T_BooleanAlgebra_898 -> T_IsPartialEquivalence_16
du_isPartialEquivalence_1038 T_BooleanAlgebra_898
v3
du_isPartialEquivalence_1038 ::
  T_BooleanAlgebra_898 ->
  MAlonzo.Code.Relation.Binary.Structures.T_IsPartialEquivalence_16
du_isPartialEquivalence_1038 :: T_BooleanAlgebra_898 -> T_IsPartialEquivalence_16
du_isPartialEquivalence_1038 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> T_IsPartialEquivalence_16
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsBoundedLattice_502
v3 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsLattice_340
v4
                   = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                       (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               (let v5 :: T_IsPartialOrder_174
v5
                      = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                          (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v4) in
                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  (let v6 :: T_IsPreorder_70
v6
                         = T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                             (T_IsPartialOrder_174 -> T_IsPartialOrder_174
forall a b. a -> b
coe T_IsPartialOrder_174
v5) in
                   AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     ((T_IsEquivalence_26 -> T_IsPartialEquivalence_16)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                        T_IsEquivalence_26 -> T_IsPartialEquivalence_16
MAlonzo.Code.Relation.Binary.Structures.du_isPartialEquivalence_42
                        ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                           T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                           (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v6))))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.Eq.refl
d_refl_1040 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
d_refl_1040 :: () -> () -> () -> T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
d_refl_1040 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
du_refl_1040 T_BooleanAlgebra_898
v3
du_refl_1040 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
du_refl_1040 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny
du_refl_1040 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsEquivalence_26 -> AgdaAny -> AgdaAny) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsEquivalence_26 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_refl_34
         ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                  ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                     ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                        T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
                        ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1))))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.Eq.reflexive
d_reflexive_1042 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  AgdaAny ->
  AgdaAny ->
  MAlonzo.Code.Agda.Builtin.Equality.T__'8801'__12 -> AgdaAny
d_reflexive_1042 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> AgdaAny
-> AgdaAny
-> T__'8801'__12
-> AgdaAny
d_reflexive_1042 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
du_reflexive_1042 T_BooleanAlgebra_898
v3
du_reflexive_1042 ::
  T_BooleanAlgebra_898 ->
  AgdaAny ->
  AgdaAny ->
  MAlonzo.Code.Agda.Builtin.Equality.T__'8801'__12 -> AgdaAny
du_reflexive_1042 :: T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
du_reflexive_1042 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> T__'8801'__12 -> AgdaAny
forall a b. a -> b
coe
      (let v2 :: t
v2 = (T_HeytingAlgebra_750 -> T_BoundedLattice_616) -> AgdaAny -> t
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_BoundedLattice_616
du_boundedLattice_794 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1) in
       AgdaAny -> AgdaAny
forall a b. a -> b
coe
         (let v3 :: T_IsBoundedLattice_502
v3 = T_BoundedLattice_616 -> T_IsBoundedLattice_502
d_isBoundedLattice_654 (AgdaAny -> T_BoundedLattice_616
forall a b. a -> b
coe AgdaAny
forall a. a
v2) in
          AgdaAny -> AgdaAny
forall a b. a -> b
coe
            (let v4 :: T_IsLattice_340
v4
                   = T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                       (T_IsBoundedLattice_502 -> T_IsBoundedLattice_502
forall a b. a -> b
coe T_IsBoundedLattice_502
v3) in
             AgdaAny -> AgdaAny
forall a b. a -> b
coe
               (let v5 :: T_IsPartialOrder_174
v5
                      = T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                          (T_IsLattice_340 -> T_IsLattice_340
forall a b. a -> b
coe T_IsLattice_340
v4) in
                AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  (let v6 :: T_IsPreorder_70
v6
                         = T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
                             (T_IsPartialOrder_174 -> T_IsPartialOrder_174
forall a b. a -> b
coe T_IsPartialOrder_174
v5) in
                   (AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny) -> AgdaAny
forall a b. a -> b
coe
                     (\ AgdaAny
v7 AgdaAny
v8 AgdaAny
v9 ->
                        (T_IsEquivalence_26 -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                          T_IsEquivalence_26 -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.du_reflexive_40
                          ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                             T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
                             (T_IsPreorder_70 -> AgdaAny
forall a b. a -> b
coe T_IsPreorder_70
v6))
                          AgdaAny
v7))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.Eq.sym
d_sym_1044 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_sym_1044 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_sym_1044 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_sym_1044 T_BooleanAlgebra_898
v3
du_sym_1044 ::
  T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_sym_1044 :: T_BooleanAlgebra_898 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_sym_1044 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsEquivalence_26 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_sym_36
         ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                  ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                     ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                        T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
                        ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1))))))))
-- Relation.Binary.Lattice.Bundles.BooleanAlgebra._.Eq.trans
d_trans_1046 ::
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  MAlonzo.Code.Agda.Primitive.T_Level_18 ->
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
d_trans_1046 :: ()
-> ()
-> ()
-> T_BooleanAlgebra_898
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
-> AgdaAny
d_trans_1046 ~()
v0 ~()
v1 ~()
v2 T_BooleanAlgebra_898
v3 = T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_1046 T_BooleanAlgebra_898
v3
du_trans_1046 ::
  T_BooleanAlgebra_898 ->
  AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_1046 :: T_BooleanAlgebra_898
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
du_trans_1046 T_BooleanAlgebra_898
v0
  = let v1 :: t
v1 = (T_BooleanAlgebra_898 -> T_HeytingAlgebra_750) -> AgdaAny -> t
forall a b. a -> b
coe T_BooleanAlgebra_898 -> T_HeytingAlgebra_750
du_heytingAlgebra_946 (T_BooleanAlgebra_898 -> AgdaAny
forall a b. a -> b
coe T_BooleanAlgebra_898
v0) in
    AgdaAny
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
      ((T_IsEquivalence_26
 -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
         T_IsEquivalence_26
-> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny -> AgdaAny
MAlonzo.Code.Relation.Binary.Structures.d_trans_38
         ((T_IsPreorder_70 -> T_IsEquivalence_26) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
            T_IsPreorder_70 -> T_IsEquivalence_26
MAlonzo.Code.Relation.Binary.Structures.d_isEquivalence_80
            ((T_IsPartialOrder_174 -> T_IsPreorder_70) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
               T_IsPartialOrder_174 -> T_IsPreorder_70
MAlonzo.Code.Relation.Binary.Structures.d_isPreorder_182
               ((T_IsLattice_340 -> T_IsPartialOrder_174) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                  T_IsLattice_340 -> T_IsPartialOrder_174
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isPartialOrder_352
                  ((T_IsBoundedLattice_502 -> T_IsLattice_340) -> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                     T_IsBoundedLattice_502 -> T_IsLattice_340
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isLattice_518
                     ((T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe
                        T_IsHeytingAlgebra_598 -> T_IsBoundedLattice_502
MAlonzo.Code.Relation.Binary.Lattice.Structures.d_isBoundedLattice_614
                        ((T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598)
-> AgdaAny -> AgdaAny
forall a b. a -> b
coe T_HeytingAlgebra_750 -> T_IsHeytingAlgebra_598
d_isHeytingAlgebra_792 (AgdaAny -> AgdaAny
forall a b. a -> b
coe AgdaAny
forall a. a
v1))))))))