plutus-metatheory-0.1.0.0: Command line tool for running plutus core programs
Safe HaskellSafe-Inferred
LanguageHaskell2010

MAlonzo.Code.Relation.Binary.Morphism.Structures

Documentation

d_Homomorphic'8322'_18T_Level_18T_Level_18 → () → () → T_Level_18T_Level_18 → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny) → () Source #

d_IsRelHomomorphism_42 ∷ p → p → p → p → p → p → p → p → p → () Source #

d_IsRelMonomorphism_64 ∷ p → p → p → p → p → p → p → p → p → () Source #

d_IsRelIsomorphism_94 ∷ p → p → p → p → p → p → p → p → p → () Source #

d_bijective_118T_Level_18T_Level_18 → () → () → T_Level_18T_Level_18 → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny) → T_IsRelIsomorphism_94T_Σ_14 Source #

d_IsOrderHomomorphism_138 ∷ p → p → p → p → p → p → p → p → p → p → p → p → p → () Source #

d_isRelHomomorphism_160T_Level_18T_Level_18 → () → () → T_Level_18T_Level_18T_Level_18T_Level_18 → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny) → T_IsOrderHomomorphism_138T_IsRelHomomorphism_42 Source #

d_isRelHomomorphism_162T_Level_18T_Level_18 → () → () → T_Level_18T_Level_18T_Level_18T_Level_18 → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny) → T_IsOrderHomomorphism_138T_IsRelHomomorphism_42 Source #

d_IsOrderMonomorphism_182 ∷ p → p → p → p → p → p → p → p → p → p → p → p → p → () Source #

d_isRelHomomorphism_210T_Level_18T_Level_18 → () → () → T_Level_18T_Level_18T_Level_18T_Level_18 → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny) → T_IsOrderMonomorphism_182T_IsRelHomomorphism_42 Source #

d_isRelMonomorphism_216T_Level_18T_Level_18 → () → () → T_Level_18T_Level_18T_Level_18T_Level_18 → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny) → T_IsOrderMonomorphism_182T_IsRelMonomorphism_64 Source #

d_isRelMonomorphism_218T_Level_18T_Level_18 → () → () → T_Level_18T_Level_18T_Level_18T_Level_18 → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny) → T_IsOrderMonomorphism_182T_IsRelMonomorphism_64 Source #

d_IsOrderIsomorphism_238 ∷ p → p → p → p → p → p → p → p → p → p → p → p → p → () Source #

d_isRelHomomorphism_268T_Level_18T_Level_18 → () → () → T_Level_18T_Level_18T_Level_18T_Level_18 → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny) → T_IsOrderIsomorphism_238T_IsRelHomomorphism_42 Source #

d_isRelMonomorphism_270T_Level_18T_Level_18 → () → () → T_Level_18T_Level_18T_Level_18T_Level_18 → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny) → T_IsOrderIsomorphism_238T_IsRelMonomorphism_64 Source #

d_isRelIsomorphism_276T_Level_18T_Level_18 → () → () → T_Level_18T_Level_18T_Level_18T_Level_18 → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny → ()) → (AgdaAnyAgdaAny) → T_IsOrderIsomorphism_238T_IsRelIsomorphism_94 Source #