{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE ViewPatterns #-}
module Data.RandomAccessList.SkewBinary
( RAList(Cons,Nil)
, contIndexZero
, contIndexOne
, safeIndexZero
, unsafeIndexZero
, safeIndexOne
, unsafeIndexOne
, Data.RandomAccessList.SkewBinary.null
, uncons
) where
import Data.Bits (setBit, unsafeShiftL, unsafeShiftR)
import Data.Word
import GHC.Exts
import Data.RandomAccessList.Class qualified as RAL
data Tree a = Node a !(Tree a) !(Tree a)
| Leaf a
deriving stock (Tree a -> Tree a -> Bool
(Tree a -> Tree a -> Bool)
-> (Tree a -> Tree a -> Bool) -> Eq (Tree a)
forall a. Eq a => Tree a -> Tree a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: forall a. Eq a => Tree a -> Tree a -> Bool
== :: Tree a -> Tree a -> Bool
$c/= :: forall a. Eq a => Tree a -> Tree a -> Bool
/= :: Tree a -> Tree a -> Bool
Eq, Int -> Tree a -> ShowS
[Tree a] -> ShowS
Tree a -> String
(Int -> Tree a -> ShowS)
-> (Tree a -> String) -> ([Tree a] -> ShowS) -> Show (Tree a)
forall a. Show a => Int -> Tree a -> ShowS
forall a. Show a => [Tree a] -> ShowS
forall a. Show a => Tree a -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
$cshowsPrec :: forall a. Show a => Int -> Tree a -> ShowS
showsPrec :: Int -> Tree a -> ShowS
$cshow :: forall a. Show a => Tree a -> String
show :: Tree a -> String
$cshowList :: forall a. Show a => [Tree a] -> ShowS
showList :: [Tree a] -> ShowS
Show)
data RAList a = BHead
{-# UNPACK #-} !Word64
!(Tree a)
!(RAList a)
| Nil
deriving stock (RAList a -> RAList a -> Bool
(RAList a -> RAList a -> Bool)
-> (RAList a -> RAList a -> Bool) -> Eq (RAList a)
forall a. Eq a => RAList a -> RAList a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: forall a. Eq a => RAList a -> RAList a -> Bool
== :: RAList a -> RAList a -> Bool
$c/= :: forall a. Eq a => RAList a -> RAList a -> Bool
/= :: RAList a -> RAList a -> Bool
Eq, Int -> RAList a -> ShowS
[RAList a] -> ShowS
RAList a -> String
(Int -> RAList a -> ShowS)
-> (RAList a -> String) -> ([RAList a] -> ShowS) -> Show (RAList a)
forall a. Show a => Int -> RAList a -> ShowS
forall a. Show a => [RAList a] -> ShowS
forall a. Show a => RAList a -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
$cshowsPrec :: forall a. Show a => Int -> RAList a -> ShowS
showsPrec :: Int -> RAList a -> ShowS
$cshow :: forall a. Show a => RAList a -> String
show :: RAList a -> String
$cshowList :: forall a. Show a => [RAList a] -> ShowS
showList :: [RAList a] -> ShowS
Show)
deriving (Int -> [Item (RAList a)] -> RAList a
[Item (RAList a)] -> RAList a
RAList a -> [Item (RAList a)]
([Item (RAList a)] -> RAList a)
-> (Int -> [Item (RAList a)] -> RAList a)
-> (RAList a -> [Item (RAList a)])
-> IsList (RAList a)
forall a. Int -> [Item (RAList a)] -> RAList a
forall a. [Item (RAList a)] -> RAList a
forall a. RAList a -> [Item (RAList a)]
forall l.
([Item l] -> l)
-> (Int -> [Item l] -> l) -> (l -> [Item l]) -> IsList l
$cfromList :: forall a. [Item (RAList a)] -> RAList a
fromList :: [Item (RAList a)] -> RAList a
$cfromListN :: forall a. Int -> [Item (RAList a)] -> RAList a
fromListN :: Int -> [Item (RAList a)] -> RAList a
$ctoList :: forall a. RAList a -> [Item (RAList a)]
toList :: RAList a -> [Item (RAList a)]
IsList) via RAL.AsRAL (RAList a)
null :: RAList a -> Bool
null :: forall a. RAList a -> Bool
null RAList a
Nil = Bool
True
null RAList a
_ = Bool
False
{-# INLINE null #-}
{-# COMPLETE Cons, Nil #-}
{-# COMPLETE BHead, Nil #-}
pattern Cons :: a -> RAList a -> RAList a
pattern $mCons :: forall {r} {a}.
RAList a -> (a -> RAList a -> r) -> ((# #) -> r) -> r
$bCons :: forall a. a -> RAList a -> RAList a
Cons x xs <- (uncons -> Just (x, xs)) where
Cons a
x RAList a
xs = a -> RAList a -> RAList a
forall a. a -> RAList a -> RAList a
cons a
x RAList a
xs
cons :: a -> RAList a -> RAList a
cons :: forall a. a -> RAList a -> RAList a
cons a
x = \case
(BHead Word64
w1 Tree a
t1 (BHead Word64
w2 Tree a
t2 RAList a
ts')) | Word64
w1 Word64 -> Word64 -> Bool
forall a. Eq a => a -> a -> Bool
== Word64
w2 ->
Word64 -> Tree a -> RAList a -> RAList a
forall a. Word64 -> Tree a -> RAList a -> RAList a
BHead (Word64 -> Int -> Word64
forall a. Bits a => a -> Int -> a
unsafeShiftL Word64
w1 Int
1 Word64 -> Int -> Word64
forall a. Bits a => a -> Int -> a
`setBit` Int
0) (a -> Tree a -> Tree a -> Tree a
forall a. a -> Tree a -> Tree a -> Tree a
Node a
x Tree a
t1 Tree a
t2) RAList a
ts'
RAList a
ts -> Word64 -> Tree a -> RAList a -> RAList a
forall a. Word64 -> Tree a -> RAList a -> RAList a
BHead Word64
1 (a -> Tree a
forall a. a -> Tree a
Leaf a
x) RAList a
ts
{-# INLINE cons #-}
uncons :: RAList a -> Maybe (a, RAList a)
uncons :: forall a. RAList a -> Maybe (a, RAList a)
uncons = \case
BHead Word64
_ (Leaf a
x) RAList a
ts -> (a, RAList a) -> Maybe (a, RAList a)
forall a. a -> Maybe a
Just (a
x, RAList a
ts)
BHead Word64
treeSize (Node a
x Tree a
t1 Tree a
t2) RAList a
ts ->
let halfSize :: Word64
halfSize = Word64 -> Int -> Word64
forall a. Bits a => a -> Int -> a
unsafeShiftR Word64
treeSize Int
1
in (a, RAList a) -> Maybe (a, RAList a)
forall a. a -> Maybe a
Just (a
x, Word64 -> Tree a -> RAList a -> RAList a
forall a. Word64 -> Tree a -> RAList a -> RAList a
BHead Word64
halfSize Tree a
t1 (RAList a -> RAList a) -> RAList a -> RAList a
forall a b. (a -> b) -> a -> b
$ Word64 -> Tree a -> RAList a -> RAList a
forall a. Word64 -> Tree a -> RAList a -> RAList a
BHead Word64
halfSize Tree a
t2 RAList a
ts)
RAList a
Nil -> Maybe (a, RAList a)
forall a. Maybe a
Nothing
{-# INLINE uncons #-}
contIndexZero :: forall a b. b -> (a -> b) -> RAList a -> Word64 -> b
contIndexZero :: forall a b. b -> (a -> b) -> RAList a -> Word64 -> b
contIndexZero b
z a -> b
f = RAList a -> Word64 -> b
findTree where
findTree :: RAList a -> Word64 -> b
findTree :: RAList a -> Word64 -> b
findTree RAList a
Nil !Word64
_ = b
z
findTree (BHead Word64
w Tree a
t RAList a
ts) Word64
i =
if Word64
i Word64 -> Word64 -> Bool
forall a. Ord a => a -> a -> Bool
< Word64
w
then Word64 -> Word64 -> Tree a -> b
indexTree Word64
w Word64
i Tree a
t
else RAList a -> Word64 -> b
findTree RAList a
ts (Word64
iWord64 -> Word64 -> Word64
forall a. Num a => a -> a -> a
-Word64
w)
indexTree :: Word64 -> Word64 -> Tree a -> b
indexTree :: Word64 -> Word64 -> Tree a -> b
indexTree !Word64
w Word64
0 Tree a
t = case Tree a
t of
Node a
x Tree a
_ Tree a
_ -> a -> b
f a
x
Leaf a
x -> if Word64
w Word64 -> Word64 -> Bool
forall a. Eq a => a -> a -> Bool
== Word64
1 then a -> b
f a
x else b
z
indexTree Word64
_ Word64
_ (Leaf a
_) = b
z
indexTree Word64
treeSize Word64
offset (Node a
_ Tree a
t1 Tree a
t2) =
let halfSize :: Word64
halfSize = Word64 -> Int -> Word64
forall a. Bits a => a -> Int -> a
unsafeShiftR Word64
treeSize Int
1
in if Word64
offset Word64 -> Word64 -> Bool
forall a. Ord a => a -> a -> Bool
<= Word64
halfSize
then Word64 -> Word64 -> Tree a -> b
indexTree Word64
halfSize (Word64
offset Word64 -> Word64 -> Word64
forall a. Num a => a -> a -> a
- Word64
1) Tree a
t1
else Word64 -> Word64 -> Tree a -> b
indexTree Word64
halfSize (Word64
offset Word64 -> Word64 -> Word64
forall a. Num a => a -> a -> a
- Word64
1 Word64 -> Word64 -> Word64
forall a. Num a => a -> a -> a
- Word64
halfSize) Tree a
t2
{-# INLINE contIndexZero #-}
contIndexOne :: forall a b. b -> (a -> b) -> RAList a -> Word64 -> b
contIndexOne :: forall a b. b -> (a -> b) -> RAList a -> Word64 -> b
contIndexOne b
z a -> b
_ RAList a
_ Word64
0 = b
z
contIndexOne b
z a -> b
f RAList a
t Word64
n = b -> (a -> b) -> RAList a -> Word64 -> b
forall a b. b -> (a -> b) -> RAList a -> Word64 -> b
contIndexZero b
z a -> b
f RAList a
t (Word64
n Word64 -> Word64 -> Word64
forall a. Num a => a -> a -> a
- Word64
1)
{-# INLINE contIndexOne #-}
unsafeIndexZero :: RAList a -> Word64 -> a
unsafeIndexZero :: forall a. RAList a -> Word64 -> a
unsafeIndexZero = a -> (a -> a) -> RAList a -> Word64 -> a
forall a b. b -> (a -> b) -> RAList a -> Word64 -> b
contIndexZero (String -> a
forall a. HasCallStack => String -> a
error String
"out of bounds") a -> a
forall a. a -> a
id
{-# INLINE unsafeIndexZero #-}
safeIndexZero :: RAList a -> Word64 -> Maybe a
safeIndexZero :: forall a. RAList a -> Word64 -> Maybe a
safeIndexZero = Maybe a -> (a -> Maybe a) -> RAList a -> Word64 -> Maybe a
forall a b. b -> (a -> b) -> RAList a -> Word64 -> b
contIndexZero Maybe a
forall a. Maybe a
Nothing a -> Maybe a
forall a. a -> Maybe a
Just
{-# INLINE safeIndexZero #-}
unsafeIndexOne :: RAList a -> Word64 -> a
unsafeIndexOne :: forall a. RAList a -> Word64 -> a
unsafeIndexOne = a -> (a -> a) -> RAList a -> Word64 -> a
forall a b. b -> (a -> b) -> RAList a -> Word64 -> b
contIndexOne (String -> a
forall a. HasCallStack => String -> a
error String
"out of bounds") a -> a
forall a. a -> a
id
{-# INLINE unsafeIndexOne #-}
safeIndexOne :: RAList a -> Word64 -> Maybe a
safeIndexOne :: forall a. RAList a -> Word64 -> Maybe a
safeIndexOne = Maybe a -> (a -> Maybe a) -> RAList a -> Word64 -> Maybe a
forall a b. b -> (a -> b) -> RAList a -> Word64 -> b
contIndexOne Maybe a
forall a. Maybe a
Nothing a -> Maybe a
forall a. a -> Maybe a
Just
{-# INLINE safeIndexOne #-}
instance RAL.RandomAccessList (RAList a) where
type Element (RAList a) = a
empty :: RAList a
empty = RAList a
forall a. RAList a
Nil
{-# INLINE empty #-}
cons :: Element (RAList a) -> RAList a -> RAList a
cons = a -> RAList a -> RAList a
Element (RAList a) -> RAList a -> RAList a
forall a. a -> RAList a -> RAList a
Cons
{-# INLINE cons #-}
uncons :: RAList a -> Maybe (Element (RAList a), RAList a)
uncons = RAList a -> Maybe (a, RAList a)
RAList a -> Maybe (Element (RAList a), RAList a)
forall a. RAList a -> Maybe (a, RAList a)
uncons
{-# INLINE uncons #-}
length :: RAList a -> Word64
length = Word64 -> RAList a -> Word64
forall {a}. Word64 -> RAList a -> Word64
go Word64
0 where
go :: Word64 -> RAList a -> Word64
go !Word64
acc RAList a
Nil = Word64
acc
go !Word64
acc (BHead Word64
sz Tree a
_ RAList a
tl) = Word64 -> RAList a -> Word64
go (Word64
acc Word64 -> Word64 -> Word64
forall a. Num a => a -> a -> a
+ Word64
sz) RAList a
tl
{-# INLINE length #-}
indexZero :: RAList a -> Word64 -> Maybe (Element (RAList a))
indexZero = RAList a -> Word64 -> Maybe a
RAList a -> Word64 -> Maybe (Element (RAList a))
forall a. RAList a -> Word64 -> Maybe a
safeIndexZero
{-# INLINE indexZero #-}
indexOne :: RAList a -> Word64 -> Maybe (Element (RAList a))
indexOne = RAList a -> Word64 -> Maybe a
RAList a -> Word64 -> Maybe (Element (RAList a))
forall a. RAList a -> Word64 -> Maybe a
safeIndexOne
{-# INLINE indexOne #-}
unsafeIndexZero :: RAList a -> Word64 -> Element (RAList a)
unsafeIndexZero = RAList a -> Word64 -> a
RAList a -> Word64 -> Element (RAList a)
forall a. RAList a -> Word64 -> a
unsafeIndexZero
{-# INLINE unsafeIndexZero #-}
unsafeIndexOne :: RAList a -> Word64 -> Element (RAList a)
unsafeIndexOne = RAList a -> Word64 -> a
RAList a -> Word64 -> Element (RAList a)
forall a. RAList a -> Word64 -> a
unsafeIndexOne
{-# INLINE unsafeIndexOne #-}