Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Synopsis
- class Breakpointable ann bps | ann → bps where
- hasBreakpoints ∷ ann → bps → Bool
- data CekState uni fun ann
- data Cmd bps
- runDriverT ∷ ∀ uni fun ann bps m. (Breakpointable ann bps, MonadFree (DebugF uni fun ann bps) m) ⇒ NTerm uni fun ann → m ()
- data DebugF uni fun ann bps a
- = InputF (Cmd bps → a)
- | DriverLogF Text a
- | StepF (CekState uni fun ann) (CekState uni fun ann → a)
- | UpdateClientF (CekState uni fun ann) a
- mkCekTrans ∷ ∀ cost uni fun ann m s. (ThrowableBuiltins uni fun, PrimMonad m, s ~ PrimState m) ⇒ MachineParameters CekMachineCosts fun (CekValue uni fun ann) → ExBudgetMode cost uni fun → EmitterMode uni fun → Slippage → m (CekTrans uni fun ann s, ExBudgetInfo cost uni fun s)
- type CekTrans uni fun ann s = Trans (CekM uni fun s) (CekState uni fun ann)
- class Monad m ⇒ MonadFree (f ∷ Type → Type) (m ∷ Type → Type) | m → f
- iterM ∷ (Functor f, Monad m) ⇒ (f (m a) → m a) → Free f a → m a
- iterTM ∷ ∀ f (m ∷ Type → Type) t a. (Functor f, Monad m, MonadTrans t, Monad (t m)) ⇒ (f (t m a) → t m a) → FreeT f m a → t m a
- partialIterT ∷ Monad m ⇒ Integer → (∀ a. f a → m a) → FreeT f m b → FreeT f m b
- cutoff ∷ ∀ (f ∷ Type → Type) (m ∷ Type → Type) a. (Functor f, Monad m) ⇒ Integer → FreeT f m a → FreeT f m (Maybe a)
- data FreeT (f ∷ Type → Type) (m ∷ Type → Type) a
Documentation
class Breakpointable ann bps | ann → bps where Source #
Leave abstract the types of annotation and breakpoints. The only thing the driver requires is an inclusion relation of breakpoints into the Annotation
hasBreakpoints ∷ ann → bps → Bool Source #
The commands that the driver may receive from the client (tui,cli,test,etc)
Step | Instruct the driver to a *SINGLE* step. Note: No need to pass breakpoints here because the stepping granularity is *minimal*. |
Continue bps | Instruct to multi-step until end-of-program or until breakpoint reached |
Next bps | Instruct to multi-step over the function call at point or until breakpoint reached |
Finish bps | Instruct to multi-step to end of current function or until breakpoint reached |
runDriverT ∷ ∀ uni fun ann bps m. (Breakpointable ann bps, MonadFree (DebugF uni fun ann bps) m) ⇒ NTerm uni fun ann → m () Source #
Entrypoint of the driver
data DebugF uni fun ann bps a Source #
The drivers's suspension functor
InputF (Cmd bps → a) | Await for the client (e.g. TUI) to tell what to do next (Cmd). |
DriverLogF Text a | The debug driver wants to log something |
StepF | An enumeratee of Driver State (generator+iteratee): Yield a state before doing a step, then await for a state to resume after the step. See Note [Stepping the driver]. |
UpdateClientF (CekState uni fun ann) a |
Reexport some functions for convenience
mkCekTrans ∷ ∀ cost uni fun ann m s. (ThrowableBuiltins uni fun, PrimMonad m, s ~ PrimState m) ⇒ MachineParameters CekMachineCosts fun (CekValue uni fun ann) → ExBudgetMode cost uni fun → EmitterMode uni fun → Slippage → m (CekTrans uni fun ann s, ExBudgetInfo cost uni fun s) Source #
Based on the supplied arguments, initialize the CEK environment and construct a state transition function. Returns the constructed transition function paired with the methods to live access the running budget.
class Monad m ⇒ MonadFree (f ∷ Type → Type) (m ∷ Type → Type) | m → f Source #
Monads provide substitution (fmap
) and renormalization (join
):
m>>=
f =join
(fmap
f m)
A free Monad
is one that does no work during the normalization step beyond simply grafting the two monadic values together.
[]
is not a free Monad
(in this sense) because
smashes the lists flat.join
[[a]]
On the other hand, consider:
data Tree a = Bin (Tree a) (Tree a) | Tip a
instanceMonad
Tree wherereturn
= Tip Tip a>>=
f = f a Bin l r>>=
f = Bin (l>>=
f) (r>>=
f)
This Monad
is the free Monad
of Pair:
data Pair a = Pair a a
And we could make an instance of MonadFree
for it directly:
instanceMonadFree
Pair Tree wherewrap
(Pair l r) = Bin l r
Or we could choose to program with
instead of Free
PairTree
and thereby avoid having to define our own Monad
instance.
Moreover, Control.Monad.Free.Church provides a MonadFree
instance that can improve the asymptotic complexity of code that
constructs free monads by effectively reassociating the use of
(>>=
). You may also want to take a look at the kan-extensions
package (http://hackage.haskell.org/package/kan-extensions).
See Free
for a more formal definition of the free Monad
for a Functor
.
Instances
Functor f ⇒ MonadFree f (Free f) | |
(Functor f, MonadFree f m) ⇒ MonadFree f (Yoneda m) | |
Defined in Data.Functor.Yoneda | |
(Functor f, MonadFree f m) ⇒ MonadFree f (MaybeT m) | |
(Functor f, Monad m) ⇒ MonadFree f (FreeT f m) | |
(Functor f, MonadFree f m) ⇒ MonadFree f (ExceptT e m) | |
(Functor f, MonadFree f m) ⇒ MonadFree f (IdentityT m) | |
(Functor f, MonadFree f m) ⇒ MonadFree f (ReaderT e m) | |
(Functor f, MonadFree f m) ⇒ MonadFree f (StateT s m) | |
(Functor f, MonadFree f m) ⇒ MonadFree f (StateT s m) | |
(Functor f, MonadFree f m, Monoid w) ⇒ MonadFree f (WriterT w m) | |
(Functor f, MonadFree f m, Monoid w) ⇒ MonadFree f (WriterT w m) | |
(Functor f, MonadFree f m) ⇒ MonadFree f (ContT r m) | |
(Functor f, MonadFree f m, Monoid w) ⇒ MonadFree f (RWST r w s m) | |
(Functor f, MonadFree f m, Monoid w) ⇒ MonadFree f (RWST r w s m) | |
iterM ∷ (Functor f, Monad m) ⇒ (f (m a) → m a) → Free f a → m a Source #
Like iter
for monadic values.
iterTM ∷ ∀ f (m ∷ Type → Type) t a. (Functor f, Monad m, MonadTrans t, Monad (t m)) ⇒ (f (t m a) → t m a) → FreeT f m a → t m a Source #
Tear down a free monad transformer using iteration over a transformer.
partialIterT ∷ Monad m ⇒ Integer → (∀ a. f a → m a) → FreeT f m b → FreeT f m b Source #
partialIterT n phi m
interprets first n
layers of m
using phi
.
This is sort of the opposite for
.cutoff
Some examples (n ≥ 0
):
partialIterT
0 _ m ≡ mpartialIterT
(n+1) phi.
return
≡return
partialIterT
(n+1) phi.
lift
≡lift
partialIterT
(n+1) phi.
wrap
≡join
.lift
. phi
cutoff ∷ ∀ (f ∷ Type → Type) (m ∷ Type → Type) a. (Functor f, Monad m) ⇒ Integer → FreeT f m a → FreeT f m (Maybe a) Source #
Cuts off a tree of computations at a given depth.
If the depth is 0
or less, no computation nor
monadic effects will take place.
Some examples (n ≥ 0
):
cutoff
0 _ ≡return
Nothing
cutoff
(n+1).
return
≡return
.
Just
cutoff
(n+1).
lift
≡lift
.
liftM
Just
cutoff
(n+1).
wrap
≡wrap
.
fmap
(cutoff
n)
Calling
is always terminating, provided each of the
steps in the iteration is terminating.retract
.
cutoff
n
data FreeT (f ∷ Type → Type) (m ∷ Type → Type) a Source #
The "free monad transformer" for a functor f
Instances
(Functor f, Monad m) ⇒ MonadFree f (FreeT f m) | |
(Functor f, MonadError e m) ⇒ MonadError e (FreeT f m) | |
Defined in Control.Monad.Trans.Free throwError ∷ e → FreeT f m a Source # catchError ∷ FreeT f m a → (e → FreeT f m a) → FreeT f m a Source # | |
(Functor f, MonadReader r m) ⇒ MonadReader r (FreeT f m) | |
(Functor f, MonadState s m) ⇒ MonadState s (FreeT f m) | |
(Functor f, MonadWriter w m) ⇒ MonadWriter w (FreeT f m) | |
(Functor f, MonadBase b m) ⇒ MonadBase b (FreeT f m) | |
Defined in Control.Monad.Trans.Free | |
Functor f ⇒ MonadTrans (FreeT f) | |
(Functor f, MonadFail m) ⇒ MonadFail (FreeT f m) | |
(Functor f, MonadIO m) ⇒ MonadIO (FreeT f m) | |
(Foldable m, Foldable f) ⇒ Foldable (FreeT f m) | |
Defined in Control.Monad.Trans.Free fold ∷ Monoid m0 ⇒ FreeT f m m0 → m0 Source # foldMap ∷ Monoid m0 ⇒ (a → m0) → FreeT f m a → m0 Source # foldMap' ∷ Monoid m0 ⇒ (a → m0) → FreeT f m a → m0 Source # foldr ∷ (a → b → b) → b → FreeT f m a → b Source # foldr' ∷ (a → b → b) → b → FreeT f m a → b Source # foldl ∷ (b → a → b) → b → FreeT f m a → b Source # foldl' ∷ (b → a → b) → b → FreeT f m a → b Source # foldr1 ∷ (a → a → a) → FreeT f m a → a Source # foldl1 ∷ (a → a → a) → FreeT f m a → a Source # toList ∷ FreeT f m a → [a] Source # null ∷ FreeT f m a → Bool Source # length ∷ FreeT f m a → Int Source # elem ∷ Eq a ⇒ a → FreeT f m a → Bool Source # maximum ∷ Ord a ⇒ FreeT f m a → a Source # minimum ∷ Ord a ⇒ FreeT f m a → a Source # | |
(Eq1 f, Eq1 m) ⇒ Eq1 (FreeT f m) | |
(Ord1 f, Ord1 m) ⇒ Ord1 (FreeT f m) | |
Defined in Control.Monad.Trans.Free | |
(Read1 f, Read1 m) ⇒ Read1 (FreeT f m) | |
Defined in Control.Monad.Trans.Free liftReadsPrec ∷ (Int → ReadS a) → ReadS [a] → Int → ReadS (FreeT f m a) Source # liftReadList ∷ (Int → ReadS a) → ReadS [a] → ReadS [FreeT f m a] Source # liftReadPrec ∷ ReadPrec a → ReadPrec [a] → ReadPrec (FreeT f m a) Source # liftReadListPrec ∷ ReadPrec a → ReadPrec [a] → ReadPrec [FreeT f m a] Source # | |
(Show1 f, Show1 m) ⇒ Show1 (FreeT f m) | |
(Monad m, Traversable m, Traversable f) ⇒ Traversable (FreeT f m) | |
Defined in Control.Monad.Trans.Free | |
(Functor f, MonadPlus m) ⇒ Alternative (FreeT f m) | |
(Functor f, Monad m) ⇒ Applicative (FreeT f m) | |
Defined in Control.Monad.Trans.Free | |
(Functor f, Functor m) ⇒ Functor (FreeT f m) | |
(Functor f, Monad m) ⇒ Monad (FreeT f m) | |
(Functor f, MonadPlus m) ⇒ MonadPlus (FreeT f m) | |
(Functor f, MonadCatch m) ⇒ MonadCatch (FreeT f m) | |
Defined in Control.Monad.Trans.Free | |
(Functor f, MonadThrow m) ⇒ MonadThrow (FreeT f m) | |
Defined in Control.Monad.Trans.Free | |
(Functor f, MonadCont m) ⇒ MonadCont (FreeT f m) | |
(Functor f, Monad m) ⇒ Apply (FreeT f m) | |
(Functor f, Monad m) ⇒ Bind (FreeT f m) | |
(Functor f, Zoom m n s t) ⇒ Zoom (FreeT f m) (FreeT f n) s t | |
Defined in Control.Lens.Zoom | |
(Read1 f, Read1 m, Read a) ⇒ Read (FreeT f m a) | |
(Show1 f, Show1 m, Show a) ⇒ Show (FreeT f m a) | |
(Eq1 f, Eq1 m, Eq a) ⇒ Eq (FreeT f m a) | |
(Ord1 f, Ord1 m, Ord a) ⇒ Ord (FreeT f m a) | |
Defined in Control.Monad.Trans.Free | |
(Traversable f, Traversable m) ⇒ Plated (FreeT f m a) | |
Defined in Control.Lens.Plated | |
Wrapped (FreeT f m a) | |
Defined in Control.Lens.Wrapped type Unwrapped (FreeT f m a) | |
(Functor m, Functor f) ⇒ Corecursive (FreeT f m a) | |
Defined in Data.Functor.Foldable embed ∷ Base (FreeT f m a) (FreeT f m a) → FreeT f m a Source # ana ∷ (a0 → Base (FreeT f m a) a0) → a0 → FreeT f m a Source # apo ∷ (a0 → Base (FreeT f m a) (Either (FreeT f m a) a0)) → a0 → FreeT f m a Source # postpro ∷ Recursive (FreeT f m a) ⇒ (∀ b. Base (FreeT f m a) b → Base (FreeT f m a) b) → (a0 → Base (FreeT f m a) a0) → a0 → FreeT f m a Source # gpostpro ∷ (Recursive (FreeT f m a), Monad m0) ⇒ (∀ b. m0 (Base (FreeT f m a) b) → Base (FreeT f m a) (m0 b)) → (∀ c. Base (FreeT f m a) c → Base (FreeT f m a) c) → (a0 → Base (FreeT f m a) (m0 a0)) → a0 → FreeT f m a Source # | |
(Functor m, Functor f) ⇒ Recursive (FreeT f m a) | |
Defined in Data.Functor.Foldable project ∷ FreeT f m a → Base (FreeT f m a) (FreeT f m a) Source # cata ∷ (Base (FreeT f m a) a0 → a0) → FreeT f m a → a0 Source # para ∷ (Base (FreeT f m a) (FreeT f m a, a0) → a0) → FreeT f m a → a0 Source # gpara ∷ (Corecursive (FreeT f m a), Comonad w) ⇒ (∀ b. Base (FreeT f m a) (w b) → w (Base (FreeT f m a) b)) → (Base (FreeT f m a) (EnvT (FreeT f m a) w a0) → a0) → FreeT f m a → a0 Source # prepro ∷ Corecursive (FreeT f m a) ⇒ (∀ b. Base (FreeT f m a) b → Base (FreeT f m a) b) → (Base (FreeT f m a) a0 → a0) → FreeT f m a → a0 Source # gprepro ∷ (Corecursive (FreeT f m a), Comonad w) ⇒ (∀ b. Base (FreeT f m a) (w b) → w (Base (FreeT f m a) b)) → (∀ c. Base (FreeT f m a) c → Base (FreeT f m a) c) → (Base (FreeT f m a) (w a0) → a0) → FreeT f m a → a0 Source # | |
t ~ FreeT f' m' a' ⇒ Rewrapped (FreeT f m a) t | |
Defined in Control.Lens.Wrapped | |
type Zoomed (FreeT f m) | |
Defined in Control.Lens.Zoom type Zoomed (FreeT f m) = FocusingFree f m (Zoomed m) | |
type Unwrapped (FreeT f m a) | |
Defined in Control.Lens.Wrapped | |
type Base (FreeT f m a) | Free transformations of monads are Recursive/Corecursive |
Defined in Data.Functor.Foldable |