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Abstract. Lambda calculi are often used as intermediate representa-
tions for compilers. However, they require extensions to handle higher-
level features of programming languages. In this paper we show how to
construct an IR based on System Fµ

ω which supports recursive functions
and datatypes, and describe how to compile it to System Fµ

ω . Our IR
was developed for commercial use at the IOHK company, where it is
used as part of a compilation pipeline for smart contracts running on a
blockchain.

1 Introduction

Many compilers make use of intermediate representations (IRs) as stepping
stones between their source language and their eventual target language. Lambda
calculi are tempting choices as IRs for functional programming languages. They
are simple, well-studied, and easy to analyze.

However, lambda calculi also have several features that make them poor IRs.

– They are hard to read and write. Although they are mostly read and writ-
ten by computers, this complicates writing compilers and debugging their
output.

– They can be hard to optimize. Some optimizations are much easier to write
on a higher-level language. For example, dead-binding elimination is much
easier with explicit let-bindings.

– They make the initial compilation step “too big”. Compiling all the way from
a high-level surface language to a lambda calculus can involve many complex
transformations, and it is often advantageous from an engineering standpoint
to break it into smaller steps.

Hence it is common to design an IR by extending a lambda calculus with
additional features which make the IR more legible, easier to optimize, or closer
to the source language (e.g. GHC Core [26], Henk [25], Idris’ TT [4], and OCaml’s
Lambda [20]). However, given that such IRs are desirable, there is little material
on implementing or compiling them.



In this paper we construct an IR suitable for a powerful functional pro-
gramming language like Haskell. We take as our lambda calculus System Fµ

ω

(System Fω with indexed fixpoints: see [27, Chapter 30], formalized recently in
[8]), which allows us to talk about higher-kinded recursive types, and extend it
to an IR called FIR which adds the following features:

– Let-binding of non-recursive terms, types, and datatypes.
– Let-binding of recursive terms and datatypes.

This is a small, but common, subset of the higher-level features that func-
tional programming languages usually have, so this provides a reusable IR for
compiler writers targeting System Fµ

ω .
Moreover, all of the compilation passes that we provide are local in the sense

that they do not access more than one level of the syntax tree, and they do not
require any type information that is not present in type annotations. So while
we provide typing rules for FIR, it is not necessary to perform type synthesis in
order to compile it.

Encoding recursive terms has traditionally been done with fixpoint combina-
tors. However, the textbook accounts typically do not cover mutual recursion,
and where it is handled it is often assumed that the calculus is non-strict. We
construct a generalized, polyvariadic fixpoint combinator that works in both
strict and non-strict base calculi, which we use to compile recursive terms.

In order to compile datatypes, we need to encode them and their accom-
panying constructors and destructors using the limited set of types and terms
we have available in our base calculus. The Church encoding ([27, Chapter 5.2,
Chapter 23.4]) is a well-known method of doing this in plain System F . With it,
we can encode even recursive datatypes, so long as the recursion occurs only in
positive positions.

However, some aspects of the Church encoding are not ideal, for example, it
requires time proportional to the size of a list to extract its tail. We use a different
encoding, the Scott encoding [1], which can encode any recursive datatype, but
requires adding a fixpoint operator to System F in order to handle arbitrary
type-level recursion.

To handle mutually recursive datatypes we borrow some techniques from the
generic programming community, in particular indexed fixpoints, and the use of
type-level tags to combine a family of mutually recursive datatypes into a single
recursive datatype. While this technique is well-known (see e.g. [32]), the details
of our approach are different, and we face some additional constraints because
we are targeting System Fµ

ω rather than a full dependently-typed calculus.
We have used FIR as an IR in developing Plutus [16], a platform for develop-

ing smart contracts targeting the Cardano blockchain. Users write programs in
Haskell, which are compiled by a GHC compiler plugin into Plutus Core, a small
functional programming language. Plutus Core is an extension of System Fµ

ω ,
so in order to easily compile Haskell’s high-level language features we developed
FIR as an IR above Plutus Core. We have used this compiler to write substantial
programs in Haskell and compile them to Plutus Core, showing that the tech-



niques in this paper are usable in practice. The compiler is available for public
use at [17].

Contributions. We make the following contributions.

– We give syntax and typing rules for FIR, a typed IR extending System Fµ
ω .

– We define a series of local compilation passes which collectively compile FIR
into System Fµ

ω .
– We provide a reference implementation of the syntax, type system, and sev-

eral of the compilation passes in Agda [24], a powerful dependently typed
programming language.

– We have written a complete compiler implementation in Haskell as part of
a production system for the Plutus platform.

Our techniques for encoding datatypes are not novel [32][21]. However, we
know of no complete presentation that handles mutual recursion and parame-
terized datatypes, and targets a calculus as small as System Fµ

ω .
We believe our techniques for encoding mutually recursive functions are

novel.
While the Agda compiler implementation is incomplete, and does not include

soundness proofs, we believe that the very difficulty of doing this makes our
partial implementation valuable. We discuss the difficulties further in Section 5.

Note on the use of Agda. Although System Fµ
ω is a complete programming

language in its own right, it is are somewhat verbose and clumsy to use for the
exposition of the techniques we are presenting.

Consequently we will use:

– Agda code, typeset colourfully, for exposition.
– System Fµ

ω code, typeset plainly, for the formal descriptions.

We have chosen to use ∗ for the kind of types, whereas Agda normally uses
Set. To avoid confusion we have aliased Set to ∗ in our Agda code. Readers
should recall that Agda uses → following binders rather than a . character.

The Agda code in this paper and the Agda compiler code are available in the
Plutus repository.

Notational conventions. We will omit kind signatures in System Fµ
ω when they

are ∗, and any other signatures when they are obvious from context or repetition.
We will be working with a number of constructs that have sequences of

elements. We will adopt the metalanguage conventions suggested by Guy Steele
[29], in particular:

– t[x := v] is a substitution of v for x in t.
– t is expanded to any number of (optionally separated) copies of t. Any un-

derlined portions of t must be expanded the same way in each copy. Where
we require access to the index, the overline is superscripted with the index.
For example:

https://github.com/IntersectMBO/plutus/tree/3008f78ed7f75cdd98da7fb06f06345fc52c2e31/papers/unraveling-recursion
https://github.com/IntersectMBO/plutus/tree/3008f78ed7f75cdd98da7fb06f06345fc52c2e31/papers/unraveling-recursion


• x : T is expanded to x1 : T1 . . . xn : Tn
• Γ ⊢ J is expanded to Γ ⊢ J1 . . . Γ : Jn

• xj : Tj+1
j

is expanded to x1 : T2 . . . xn : Tn+1

– t→ u is expanded to t1 → . . . → tn → u, similarly for ⇒.

2 Datatype encodings

The Scott encoding represents a datatype as the type of the pattern-matching
functions on it. For example, the type of booleans, Bool, is encoded as

∀R.R→ R→ R

That is, for any output type R you like, if you provide an R for the case where
the value is false and an R for the case where the value is true, then you have
given a method to construct an R from all possible booleans, thus performing
a sort of pattern-matching. In general the arguments to the encoded datatype
value are functions which transform the arguments of each constructor into an
R.

The type of naturals, Nat, is encoded as

∀R.R→ (Nat → R) → R

Here we see an occurrence of Nat in the definition, which corresponds to recursive
use in the “successor” constructor. We will need type-level recursion to deal with
recursive references.

The Church encoding of Bool is the same as the Scott encoding. This is true
for all non-recursive datatypes, but not for recursive datatypes. The Church
encoding of Nat is:

∀R.R→ (R→ R) → R

Here the recursive occurrence of Nat has disappeared, replaced by an R. This
is because while the Scott encoding corresponds to a pattern-match on a type,
the Church encoding corresponds to a fold, so recursive occurrences have already
been folded into the output type.

This highlights the tradeoffs between the two encodings (see [19] for further
discussion):

– To operate on a Church encoded value we must perform a fold on the entire
structure, which is frequently inefficient. For a Scott encoded value, we only
have to inspect the surface level of the term, which is inexpensive.

– Since recursive occurrences of the type are already “folded” in the Church
encoding, there is no need for a type-level recursion operator. Contrast this
with the situation with the Scott encoding, in which additional type-level
machinery (fixed points) is needed to define type-level recursion.

In this paper we will use the Scott encoding to encode datatypes.



3 Syntax and type system of System F µ
ω and FIR

FIR is an extension of System Fµ
ω , which is itself an extension of the well-known

System Fω. In the following figures we give

– Syntax (Figure 1)
– Kinding (Figure 2)
– Well-formedness of constructors and bindings (Figure 4)
– Type equivalence (Figure 5)
– Type synthesis (Figure 6)

for full FIR. Cases without highlighting are for System Fω, while we highlight
additions for System Fµ

ω and FIR .
There are a number of auxiliary definitions in Figure 3 for dealing with

datatypes and bindings. These define kinds and types for the various bindings
produced by datatype bindings. We will go through examples of how they work
in Section 4.3.

3.1 Recursive types

System Fω is very powerful, but does not allow us to define (non-positive) re-
cursive types. Adding a type-level fixed point operator enables us to do this (see
e.g. [27, Chapter 20]). However, we must make a number of choices about the
precise nature of our type-level fixed points.

Isorecursive and equirecursive types. The first choice we have is between
two approaches to exposing the fixpoint property of our recursive types. Systems
with equirecursive types identify (fix f) and f(fix f); whereas systems with
isorecursive types provide an isomorphism between the two, using a term unwrap
to convert the first into the second, and a term wrap for the other direction.

The tradeoff is that equirecursive types add no additional terms to the lan-
guage, but have a more complicated metatheory. Indeed, typechecking System Fµ

ω

with equirecursive types is not known to be decidable in general ([11,7]). Isorecur-
sive types, on the other hand, have a simpler metatheory, but require additional
terms. It is not too important for an IR to be easy to program by hand, so we
opt for isorecursive types, with our witness terms being wrap and unwrap.

Choosing an appropriate fixpoint operator. We also have a number of
options for which fixpoint operator to add. The most obvious choice is a fixpoint
operator fix which takes fixpoints of type-level endofunctions at any kind K (i.e.
it has signature fix : (K ⇒ K) ⇒ K). In contrast, our language System Fµ

ω has
a fixpoint operator ifix (“indexed fix”) which allows us to take fixpoints only at
kinds K ⇒ ∗.
The key advantage of ifix over fix is that it is much easier to give fully-
synthesizing type rules for ifix. To see this, suppose we had a fix operator



terms t, u ::= x variable
λx : T.t lambda abstraction
t t function application
ΛX :: K.t type abstraction
t {T} type application
wrap T U t wrap
unwrap t unwrap

let [rec] b in t let

bindings b ::= x : T = t term binding
X :: K = T type binding

data X (Y :: K) = c with x datatype binding

constructors c ::= x (T )

values v ::= λx : T.t lambda abstraction
ΛX :: K.t type abstraction
wrap T U v wrap

types T,U ::= X type variable
T → U arrow type
∀X :: K.T universal type
λX :: K.T function type
T U function application
ifix T U fixpoint type

contexts Γ ::= ∅ empty
Γ, x : T term variable binding
Γ,X :: K type variable binding

kind K ::= ∗ type kind
K ⇒ K arrow kind

Fig. 1: Syntax of FIR

in our language, with corresponding wrap and unwrap terms. We now want to
write typing rules for wrap. However, fix allows us to take fixpoints at arbitrary
kinds, whereas wrap and unwrap are terms, which always have types of kind ∗.
Thus, the best we can hope for is to use wrap and unwrap with fully applied
fixed points, i.e.:

wrap0 f0 t : fix f0 where t : f0 (fix f0)
wrap1 f1 a1 t : fix f1 a1 where t : f1 (fix f1) a1
wrap2 f2 a1 a2 t : fix f2 a1 a2 where t : f2 (fix f2) a1 a2
. . .



K-TVar X :: K ∈ Γ
Γ ⊢ X :: K

K-Abs
Γ,X :: K1 ⊢ T :: K2

Γ ⊢ (λX :: K1.T ) :: K1 ⇒ K2

K-App

Γ ⊢ T1 :: K1 ⇒ K2

Γ ⊢ T2 :: K1

Γ ⊢ (T1 T2) :: K2

K-Arrow Γ ⊢ T1 :: ∗ Γ ⊢ T2 :: ∗
Γ ⊢ (T1 → T2) :: ∗

K-All
Γ,X :: K ⊢ T :: ∗

Γ ⊢ (∀X :: K.T ) :: ∗
K-Ifix

Γ ⊢ T :: K
Γ ⊢ F :: (K ⇒ ∗) ⇒ (K ⇒ ∗)

Γ ⊢ (ifix F T ) :: ∗

Fig. 2: Kinding for FIR

Throughout this figure when d or c is an argument
d = data X (Y :: K) = (c) with x

c = x(T )

Auxiliary functions
branchTy(c,R) = T → R

dataTy(d) = λ(Y :: K).∀R.(branchTy(c,R)) → R

dataKind(d) = K ⇒ ∗
constrTy(d, c) = ∀(Y :: K).T → X Y

matchTy(d) = ∀(Y :: K).(X Y ) → (dataTy(d) Y )

Binder functions
dataBind(d) = X :: dataKind(d)
constrBind(d, c) = c : constrTy(d, c)

constrBinds(d) = constrBind(d, c)
matchBind(d) = x : matchTy(d)
binds(x : T = t) = x : T
binds(X : K = T ) = X : K
binds(d) = dataBind(d), constrBinds(d),matchBind(d)

Fig. 3: Auxiliary definitions

This must be accounted for in our typing rules for fixed points.
It is possible to give typing rules for wrap that will do the right thing re-

gardless of how the fixpoint type is applied. One approach is to use elimination
contexts, which represent the context in which a type will be eliminated (i.e.
applied). This is the approach taken in [10]. However, this incurs a cost, since
we cannot guess the elimination context (since type synthesis is bottom-up), so
we must attach elimination contexts to our terms somehow.

An alternative approach is to pick a more restricted fixpoint operator. Using
ifix avoids the problems of fix: it always produces fixpoints at kind K ⇒ ∗,



W-Con
c = x(T ) Γ ⊢ T :: ∗

Γ ⊢ok c

W-Term Γ ⊢ T :: ∗ Γ ⊢ t : T
Γ ⊢ok x : T = t

W-Type Γ ⊢ T :: K
Γ ⊢ok X : K = T

W-Data

d = data X (Y :: K) = (c) with x

Γ ′ = Γ, Y :: K Γ ′ ⊢ok c

Γ ⊢ok d

Fig. 4: Well-formedness of constructors and bindings

Q-Refl
T ≡ T

Q-Symm T ≡ S
S ≡ T

Q-Trans S ≡ U U ≡ T
S ≡ T

Q-Arrow S1 ≡ S2 T1 ≡ T2

(S1 → T1) ≡ (S2 → T2)

Q-All S ≡ T
(∀X :: K.S) ≡ (∀X :: K.T )

Q-Abs S ≡ T
(λX :: K.S) ≡ (λX :: K.T )

Q-App S1 ≡ S2 T1 ≡ T2

S1T1 ≡ S2T2
Q-Beta

(λX :: K.T1)T2 ≡ T1[X := T2]

Fig. 5: Type equivalence for FIR

which must be applied to precisely one argument of kind K before producing a
type of kind ∗. This means we can give relatively straightforward typing rules
as shown in Figure 6.

Adequacy of ifix. Perhaps surprisingly, ifix is powerful enough to give us
fixpoints at any kind K. We give a semantic argument here, but the idea is
simply stated: we can “CPS-transform” a kind K into (K ⇒ ∗) ⇒ ∗, which then
has the correct shape for ifix.

Definition 1. Let J and K be kinds. Then J is a retract of K if there exist
functions ϕ : J ⇒ K and ψ : K ⇒ J such that ψ ◦ ϕ = id.

Proposition 1. Suppose J is a retract of K and there is a fixpoint operator
fixK on K. Then there is fixpoint operator fixJ on J .

Proof. Take fixJ(f) = ψ(fixK(ϕ ◦ f ◦ ψ)).

Proposition 2. Let K be a kind in System Fµ
ω . Then there is a unique (possibly

empty) sequence of kinds (K0, . . . ,Kn) such that K = K ⇒ ∗.

Proof. Simple structural induction.



T-Var x : T ∈ Γ
Γ ⊢ x : T

T-Abs
Γ, x : T1 ⊢ t : T2 Γ ⊢ T1 :: ∗

Γ ⊢ (λx : T1.t) : T1 → T2

T-App Γ ⊢ t1 : T1 → T2 Γ ⊢ t2 : T1

Γ ⊢ (t1 t2) : T2

T-TAbs
Γ,X :: K ⊢ t : T

Γ ⊢ (ΛX :: K.t) : (∀X :: K.T )

T-TApp Γ ⊢ t1 : ∀X :: K2.T1 Γ ⊢ T2 :: K2

Γ ⊢ (t1 {T2}) : T1[X := T2]
T-Eq Γ ⊢ t : S S ≡ T

Γ ⊢ t : T

T-Wrap

Γ ⊢ M : (F (λ(X :: K). ifixF X)) T Γ ⊢ T :: K
Γ ⊢ F :: (K ⇒ ∗) ⇒ (K ⇒ ∗)
Γ ⊢ wrap F T M : ifixF T

T-Unwrap Γ ⊢ M : ifixF T Γ ⊢ T :: K
Γ ⊢ unwrapM : (F (λ(X :: K). ifixF X)) T

T-Let
Γ ⊢ T :: ∗ Γ ⊢ok b Γ, binds(b) ⊢ t : T

Γ ⊢ (let b in t) : T

T-LetRec
Γ ⊢ T :: ∗ Γ ′ = Γ, binds(b) Γ ′ ⊢ok b Γ ′ ⊢ t : T

Γ ⊢ (let rec b in t) : T

Fig. 6: Type synthesis for FIR

Proposition 3. For any kind K in System Fµ
ω , K is a retract of (K ⇒ ∗) ⇒ ∗.

Proof. Let K = K ⇒ ∗ (by Proposition 2), and take

ϕ : K ⇒ (K ⇒ ∗) ⇒ ∗
ϕ = λ(x :: K).λ(f :: K ⇒ ∗).f x
ψ : ((K ⇒ ∗) ⇒ ∗) ⇒ K

ψ = λ(w :: (K ⇒ ∗) ⇒ ∗).λ(a :: K).w(λ(o :: K).o a)

Corollary 1. If there is a fixpoint operator at kind (K ⇒ ∗) ⇒ ∗ then there is
a fixpoint operator at any kind K.

We can instantiate ifix with K ⇒ ∗ to get fixpoints at (K ⇒ ∗) ⇒ ∗, so
ifix is sufficient to get fixpoints at any kind.

Note that since our proof relies on Proposition 2, it will not go through for
arbitrary kinds when there are additional kind forms beyond ∗ and ⇒. However,
it will still be true for all kinds of the structure shown in Proposition 2.

The fact that retractions preserve the fixed point property is well-known
in the context of algebraic topology: see [12, Exercise 4.7] or [5, Proposition



23.9] for example. While retractions between datatypes are a common tool in
theoretical computer science (see e.g. [30]), we have been unable to find a version
of Proposition 1 in the computer science literature. Nonetheless, we suspect this
to be widely known.

3.2 Datatypes

FIR includes datatypes. A FIR datatype defines a type with a kind, parameter-
ized by several type variables. The right-hand side declares of a list of construc-
tors with type arguments, and the name of a matching function.3 They thus are
similar to the familiar style of defining datatypes in languages such as Haskell.

For example,

data Maybe (A :: ∗) = (Nothing(), Just(A)) with matchMaybe

defines the familiar Maybe datatype, with constructors Nothing and Just, and
matching function matchMaybe.

The type of matchMaybe is MaybeA→ ∀R.R→ (A→ R) → R. This acts as
a pattern-matching function on Maybe — exactly as we saw the Scott encoding
behave in Section 2. The matcher converts the abstract datatype into the raw,
Scott-encoded type which can be used as a pattern matcher. We will see the full
details in Section 4.3, and the type is given by matchTy(Maybe) as defined in
Figure 10.

Since FIR includes recursive datatypes, we could have removed ifix, wrap
and unwrap from FIR. However, in practice it is useful for the target language
(System Fµ

ω ) to be a true subset of the source language (FIR), as this allows us
to implement compilation as a series of FIR-to-FIR passes.

3.3 Let

FIR also features let terms. These have a number of bindings in them which
bind additional names which are in scope inside the body of the let, and inside
the right-hand-sides of the bindings in the case of a recursive let.

FIR supports let-binding terms, (opaque) types, and datatypes.
The typing rules for let are somewhat complex, but are crucially responsible

for managing the scopes of the bindings defined in the let. In particular:

– The bindings defined in the let are not in scope when checking the right-
hand sides of the bindings if the let is non-recursive, but are in scope if it is
recursive.

3 Why declare a matching function explicitly, rather than using case expressions? The
answer is that we want to be local : matching functions can be defined and put into
scope when processing the datatype binding, whereas case expressions require addi-
tional program analysis to mach up the expression with the corresponding datatype.



– The bindings defined in the let are not in scope when checking the type of
the entire binding.4

The behaviour of type-let is also worth explaining. Type-lets are more like
polymorphism than type aliases in a language like Haskell. That is, they are
opaque inside the body of the let, whereas a type alias would be transparent.
This may make them seem like a useless feature, but this is not so. Term-lets
are useful for binding sub-expressions of term-level computations to reusable
names; type-lets are similarly useful for binding sub-expressions of type-level
computations.

4 Compilation

We will show how to compile FIR by defining a compilation scheme for each
feature in FIR:

– Non-recursive bindings of terms (Cterm, Section 4.1) and types (Ctype, Sec-
tion 4.1)

– Recursive bindings of terms (Ctermrec, Section 4.2)
– Non-recursive bindings of datatypes (Cdata, Section 4.3)
– Recursive bindings of datatypes (Cdatarec, Section 4.4)

We do not consider recursive bindings of types, since the case of recursive
datatypes is much more interesting and subsumes it.

Although our goal is to compile to System Fµ
ω , since it is a subset of FIR we

can treat each pass as targeting FIR, by eliminating one feature from the lan-
guage until we are left with precisely the subset that corresponds to System Fµ

ω .
This has the advantage that we can continue to features of FIR until the point
in the pipeline in which they are eliminated.5

In particular, we will use non-recursive let-bindings in Ctermrec and Cdatarec,
which imposes some ordering constraints on our passes.

Homogeneous let-bindings. We have said that we are going to compile e.g.
term and type bindings separately, but our syntax (and typing rules) allows for
let terms with many bindings of both sorts. While this is technically true, it is
an easy problem to avoid.

Non-recursive bindings do not interfere with each other, since the newly-
defined variables cannot occur in the right-hand sides of other bindings. That
means that we can always decompose a single term with n bindings into n
separate terms, one for each binding. Hence we can consider each sort of binding
(and indeed, each individual binding) in isolation.
4 This is the same device usually employed when giving typing rules for existential

types to ensure that the inner type does not escape.
5 An elegant extension of this approach would be to define an indexed family of lan-

guages with gradually fewer features. However, this would be a distraction from the
main point of this paper, so we have not adopted it.



Cterm(let x : t = b in v) = (λ(x : t).v) b
Ctype(let t :: k = b in v) = (Λ(t :: k).v) {b}

Fig. 7: Compilation of non-recursive term and type bindings

The same is not true for recursive bindings. To simplify the presentation we
add a restriction to the programs that we compile: we require recursive lets to
be homogeneous, in that they must only contain one sort of binding (term, type,
or datatype). This means that we can similarly consider each sort of binding in
isolation, although we will of course need to consider multiple bindings of the
same sort.

This restriction is not too serious in practice. Given a recursive let term with
arbitrary bindings:

– Types cannot depend on terms, so there are no dependencies from types or
datatypes to terms.

– We do not support recursive type bindings, so there are no dependencies
from types or datatypes to types.

So we can always pull out the term and type bindings into separate (recursive)
let terms. The situation would be more complicated if we wanted to support
recursive types or dependent types.

4.1 Non-recursive term and type bindings

Non-recursive term and type bindings are easy to compile. They are encoded as
immediately-applied lambda- and type-abstractions, respectively. We define the
compilation scheme in Figure 7.

4.2 Recursive term bindings

Self-reference and standard combinators. It is well-known that we cannot
encode the Y combinator in the polymorphic lambda calculus, but that we can
encode it if we have recursive types [14, Section 20.3].6 We need the following
types:

Fix0 : (∗ → ∗) → ∗
Fix0 = IFix (λ Rec F → F (Rec F ))

– Type for values which can be applied to themselves
Self : ∗ → ∗

6 We here mean arbitrary recursive types, not merely strictly positive types. We cannot
encode the Y combinator in Agda, for example, without disabling the positivity
check.



Self a = Fix0 (λ Rec → Rec → a)

self : ∀ {A} → (Self A → A) → Self A
self f = wrap f

unself : ∀ {A} → Self A → Self A → A
unself s = unwrap s

selfApply : ∀ {A} → Self A → A
selfApply s = unself s s

The first thing we defined was Fix0 : (∗ ⇒ ∗) ⇒ ∗, which is a fixpoint operator
that only works at kind ∗. We won’t need the full power of ifix for this sec-
tion, so the techniques here should be applicable for other recursive variants of
System Fω, provided they are able to define Fix0.

Now we can define the Y combinator and its η-expanded version, the Z
combinator.

y : ∀ {A} → (A → A) → A
y f = (λ z → f (selfApply z ))

(self (λ z → f (selfApply z )))

z : ∀ {A B : ∗} → ((A → B) → (A → B)) → (A → B)
z f = (λ z → f (λ a → (selfApply z ) a))

(self (λ z → f (λ a → (selfApply z ) a)))

In strict lambda calculi the Y combinator does not terminate, and we need to
use the Z combinator, which has a more restricted type (it only allows us to take
the fixpoint of things of type A→ B).

Mutual recursion. The Y and Z combinators allow us to define singly recursive
functions, but we also want to define mutually recursive functions.

This is easy in a non-strict lambda calculus: we have the Y combinator, and
we know how to encode tuples, so we can simply define a recursive tuple of
functions. However, this is still easy to get wrong, as we must be careful not to
force the recursive tuple too soon.

Moreover, this approach does not work with the Z combinator, since a tuple
is not a function (the Scott-encoded version is a function, but a polymorphic
function).

We can instead construct a more generic fixpoint combinator which will be
usable in both a non-strict and strict setting. We will present the steps using
recursive definitions for clarity, but all of these can be implemented with the Z
combinator.

Let us start with the function fix2 which takes the fixpoint of a function of
2-tuples.

fix2 : ∀ {A B} → (A × B → A × B) → A × B
fix2 f = f (fix2 f )



We can transform this as follows: first we curry f .

fix2-uncurry : ∀ {A B} → (A → B → A × B) → A × B
fix2-uncurry f = (uncurry f ) (fix2-uncurry f )

Now, we replace both the remaining tuple types with Scott-encoded versions,
using the corresponding version of uncurry for Scott-encoded 2-tuples.

uncurry2-scott
: ∀ {A B R : ∗}
→ (A → B → R)
→ ((∀ {Q} → (A → B → Q) → Q) → R)

uncurry2-scott f g = g f

fix2-scott
: ∀ {A B}
→ (A → B → ∀ {Q} → (A → B → Q) → Q)
→ ∀ {Q} → (A → B → Q) → Q

fix2-scott f = (uncurry2-scott f ) (fix2-scott f )

Finally, we reorder the arguments to f to make it look as regular as possible.

fix2-rearrange
: ∀ {A B}
→ (∀ {Q} → (A → B → Q) → A → B → Q)
→ ∀ {Q} → (A → B → Q) → Q

fix2-rearrange f k = (uncurry2-scott (f k)) (fix2-rearrange f )

This gives us a fixpoint function pairs of mutually recursive values, but we want
to handle arbitrary sets of recursive values. At this point, however, we notice that
all we need to do to handle, say, triples, is to replace A→ B with A→ B → C
and the binary uncurry with the ternary uncurry. And we can abstract over this
pattern.

fixBy
: ∀ {F : ∗ → ∗}
→ ((∀ {Q} → F Q → Q) → ∀ {Q} → F Q → Q)
→ (∀ {Q} → F Q → F Q) → ∀ {Q} → F Q → Q

fixBy by f = by (fixBy by f ) ◦ f

To get the behaviour we had before, we instantiate by appropriately:

by2
: ∀ {A B}
→ (∀ {Q} → (A → B → Q) → Q)
→ ∀ {Q} → (A → B → Q) → Q

by2 r k = (uncurry2-scott k) r



fixBy2
: ∀ {A B}
→ (∀ {Q} → (A → B → Q) → A → B → Q)
→ ∀ {Q} → (A → B → Q) → Q

fixBy2 = fixBy by2

How do we interpret by? Inlining uncurry into our definition of by2 we find that
it is in fact the identity function! However, by choosing the exact definition we
can tweak the termination properties of our fixpoint combinator. Indeed, our
current definition does not terminate even in a non-strict language like Agda,
since it evaluates the components of the recursive tuple before feeding them into
f . However, we can avoid this by “repacking” the tuple so that accessing one of
its components will no longer force the other.7

– Repacking tuples.
repack2 : ∀ {A B} → A × B → A × B
repack2 tup = (proj1 tup , proj2 tup)

– Repacking Scott-encoded tuples.
by2-repack

: ∀ {A B : ∗}
→ (∀ {Q : ∗} → (A → B → Q) → Q)
→ ∀ {Q : ∗} → (A → B → Q) → Q

by2-repack r k = k (r (λ x y → x )) (r (λ x y → y))

Passing by2-repack to fixBy gives us a fixpoint combinator that terminates in
a non-strict language like Agda or Haskell.

Can we write one that terminates in a strict language? We can, but we incur
the same restriction that we have when using the Z combinator: the recursive
values must all be functions. This is because we use exactly the same trick,
namely η-expanding the values.

– with tuples
repack2-strict

: ∀ {A1 B1 A2 B2 : ∗}
→ (A1 → B1) × (A2 → B2)
→ (A1 → B1) × (A2 → B2)

repack2-strict tup = ((λ x → proj1 tup x ) , (λ x → proj2 tup x ))

– with Scott-encoded tuples
by2-strict

: ∀ {A1 B1 A2 B2 : ∗}
→ (∀ {Q : ∗} → ((A1 → B1) → (A2 → B2) → Q) → Q)

7 We have defined × as a simple datatype, rather than using the more sophisticated
version in the Agda standard library. The standard library version has different
strictness properties — indeed, for that version repack2 is precisely the identity.



Auxiliary functions
Id = λ(X :: ∗).X
F ⇝ G = ∀Q.F Q → G Q
fixBy = Λ(F :: ∗ ⇒ ∗).λ(by : (F ⇝ Id) → (F ⇝ Id)).

z (λ(r : (F ⇝ F ) → (F ⇝ Id)).λ(f : F ⇝ F ).by(ΛQ.λ(k : F Q).r f {Q} (f {Q} k)))

selk(T ) = λ(x : T ).xk

by(T ) = λ(r : ∀Q.(T → Q) → Q).ΛQ.λ(k : T → Q).k r {Q} (selj (T ))
j

fix(T ) = fixBy {λQ.T → Q} by(T )

Compilation function
Ctermrec(let rec x : T = t in u)

= let r = fix(T ) ΛQ.λ(k : T → Q) (x : T ).k t

in letx = r {T} (selj (T ))
j
in u

Fig. 8: Compilation of recursive let-bindings

→ ∀ {Q : ∗} → ((A1 → B1) → (A2 → B2) → Q) → Q
by2-strict r k = k (λ x → r (λ f1 f2 → f1 x )) (λ x → r (λ f1 f2 → f2 x ))

This gives us general, n-ary fixpoint combinators in System Fµ
ω .

Formal encoding of recursive let-bindings. We define the compilation
scheme for recursive term bindings in Figure 8, along with a number of aux-
iliary functions.
The definitions of fixBy, by, and fix are as in our Agda presentation. The function
selk is what we pass to a Scott-encoded tuple to select the kth element. The Z
combinator is defined as in the previous section (we do not repeat the definition
here). We have given the lazy version of by, but it is straightforward to define
the strict version, in exchange for the corresponding restriction on the types of
the recursive bindings.

The compilation function is a little indirect: we create a recursive tuple of
values, then we let-bind each component of the tuple again! Why not just pass
a single function to the tuple that consumes all the components and produces
t? The answer is that in order to use the Scott-encoded tuple we need to give
it the type of the value that we are producing, which in this case would be the
type of t. But we do not know this type without doing type inference on FIR.
This way we instead extract each of the components, whose types we do know,
since they are in the original let-binding.

Polymorphic recursion with the Z combinator. Neither the simple Z com-
binator nor our strict fixBy allow us to define recursive values which are not of
function type. This might not seem too onerous, but this also forbids defin-
ing polymorphic values, such as polymorphic functions. For example, we cannot
define a polymorphic map function this way.



let rec map : ∀A B.(A → B) → (ListA → ListB) =
ΛA B. λ(f : A → B) (l : ListA)
matchList {A} l {ListB}
(Nil {B})
(λ(h : A)(t : ListA).Cons {B} (f h) (map {A} {B} f t))

in t

⇒

let rec map′ : Unit → ∀A B.(A → B) → (ListA → ListB) =
λ(u : Unit). ΛA B. λ(f : A → B) (l : ListA)
matchList {A} l {ListB}
(Nil {B})
(λ(h : A)(t : ListA).Cons {B} (f h) (map′ () {A} {B} f t))

in let map : ∀A B.(A → B) → (ListA → ListB) = map′ ()
in t

Fig. 9: Example of transforming polymorphic recursion

Sometimes we can get around this problem by floating the type abstraction
out of the recursion. This will work in many cases, but fails in any instance of
polymorphic recursion, which includes most recursive functions over irregular
datatypes.

However, we can work around this restriction if we are willing to trans-
form our program. The thunking transformation is a variant of the well-known
transformation for simulating call-by-name evaluation in a call-by-value language
[9][28]. Conveniently, this also has the property that it transforms the “thunked”
parameters into values of function type, thus making them computable with the
Z combinator.

The thunking transformation takes a set of recursive definitions fi : Ti = bi
and transforms it by:

– Defining the Unit datatype with a single, no-argument constructor ().
– Creating new (recursive) definitions f ′i : Unit → Ti = λ(u : Unit).bi.
– Replacing all uses of fi in the bis with f ′i (),
– Creating new (non-recursive) definitions fi : Ti = f ′i () to replace the origi-

nals.

Now our recursive value is truly of function type, rather than universal type, so
we can compile it as normal.

An example is given in Figure 9 of transforming a polymorphic map function.

4.3 Non-recursive datatype bindings

Non-recursive datatypes are fairly easy to compile. We will generalize the Scott-
encoding approach described in Section 2.



Throughout this figure when d or c is an argument
d = data X (Y :: K) = (c) with x

c = x(T )

Auxiliary functions
unveil(d, t) = t[X := dataTy(d)]

constrk(d, c) = unveil(d, Λ(Y :: K).λ(a : T ).ΛR.λ(b : branchTy(c,R)) bk a)

constrs(d) = constrj(d, cj)
j

match(d) = Λ(Y :: K).λ(x : (dataTy(d) Y ).x

Compilation function
Cdata(let d in t)

= (Λ(dataBind(d)).λ(constrBinds(d)).λ(matchBind(d)).t)
{dataTy(d)}
constrs(d)
match(d)

Fig. 10: Compilation of non-recursive datatype bindings

We define the compilation scheme for non-recursive datatype bindings in
Figure 10, along with a number of auxiliary functions in addition to those in
Figure 3.
Let’s go through the auxiliary functions in turn (both those in Figure 3 and
Figure 10), using the Maybe datatype as an example.

d := data Maybe A = (Nothing(), Just(A)) with match

– branchTy(c,R) computes the type of a function which consumes all the ar-
guments of the given constructor, producing a value of type R.

branchTy(Nothing(), R) = R

branchTy(JustA,R) = A→ R

– dataKind(d) computes the kind of the datatype type. This is a kind arrow
from the kinds of all the type arguments to ∗.

dataKind(Maybe) = ∗ ⇒ ∗

– dataTy(d) computes the Scott-encoded datatype. This binds the type vari-
ables with a lambda and then constructs the pattern matching function type
using the branch types.

dataTy(d) = λA.∀R.R→ (A→ R) → R

– constrTy(c, T ) computes the type of a constructor of the datatype d.

constrTy(Nothing(),Maybe) = ∀A.MaybeA
constrTy(JustA,Maybe) = ∀A.A→ MaybeA



– unveil(d, t) “unveils” the datatype inside a type or term, replacing the ab-
stract definition with the concrete, Scott-encoded one. We apply this to the
definition of the constructors, for a reason we will see shortly. This makes
no difference for non-recursive datatypes, but will matter for recursive ones.

unveil(d, t) = t[Maybe := λA.∀R.R→ (A→ R) → R]

– constrk(d, c) computes the definition of the kth constructor of a datatype.
To match the signature of the constructor, this is type abstracted over the
type variables and takes arguments corresponding to each of the construc-
tor arguments. Then it constructs a pattern matching function which takes
branches for each alternative and uses the kth branch on the constructor
arguments.

constr1(d,Nothing()) = ΛA.ΛR.λ(b1 : R)(b2 : A→ R).b1

constr2(d, Just(A)) = ΛA.λ(v : A).ΛR.λ(b1 : R)(b2 : A→ R).b2 v

– matchTy(d) computes the type of the datatype matcher, which converts from
the abstract datatype to a pattern-matching function — that is, precisely
the Scott-encoded type.

matchTy(d) = ∀A.MaybeA→ (∀R.R→ (A→ R) → R)

– match(d) computes the definition of the matcher of the datatype, which is
the identity.

match(d) = ΛA.λ(v : MaybeA).v

The basic idea of the compilation scheme itself is straightforward: use type ab-
straction and lambda abstraction to bind names for the type itself, its construc-
tors, and its match function.

There is one quirk: usually when encoding let-bindings we create an imme-
diately applied type- or lambda-abstraction, but here they are interleaved. The
reason for this is that the datatype must be abstract inside the signature of the
constructors and the match function, since otherwise any uses of those functions
inside the body will not typecheck. But inside the definitions the datatype must
be concrete, since the definitions make use of the concrete structure of the type.
This explains why we needed to use unveil(d, t) on the definitions of the con-
structors, since they appear outside the scope in which we define the abstract
type. Note that this means we really must perform a substitution rather than
creating a let-binding, since that would simply create another abstract type.8

8 It is well-known that abstract datatypes can be encoded with existential types ([22]).
The presentation we give here is equivalent to using a value of existential type which
is immediately unpacked, and where existential types are given the typical encoding
using universal types.



Consider the following example:

Cdata(let data Maybe A = (Nothing(), Just(A)) with match
in match {Int} (Just{Int}1) 0 (λx : Int .x+ 1))

= (Λ(Maybe :: ∗ ⇒ ∗). (signature of Maybe)
λ(Nothing : ∀A.MaybeA). (signature of Nothing)
λ(Just : ∀A.A→ MaybeA). (siganture of Just)
λ(match : ∀A.MaybeA→ ∀R.R→ (A→ R) → R). (signature of match)
match {Int} (Just{Int}1) 0 (λx : Int .x+ 1)) (body of the let)
(λA.∀R.R→ (A→ R) → R) (definition of Maybe)
(ΛA.ΛR.λ(b1 : R) (b2 : A→ R).b1) (definition of Nothing)
(ΛA.λ(v1 : A).ΛR.λ(b1 : R) (b2 : A→ R).b2 v1) (definition of Just)
(ΛA.λ(v : ∀R.R→ (A→ R) → R).v) (definition of match)

Here we can see that:

– Just needs to produce the abstract type inside the body of the let, otherwise
the application of match will be ill-typed.

– The definition of Just produces the Scott-encoded type.
– match maps from the abstract type to the Scott-encoded type inside the

body of the let.
– The definition of match is the identity on the Scott-encoded type.

4.4 Recursive datatype bindings

Adding singly recursive types is comparatively straightforward. We can write
our datatype as a type-level function (often called a “pattern functor” [3]) with
a parameter for the recursive use of the type, and then use our fixpoint operator
to produce the final datatype.9

ListF : (∗ → ∗) → (∗ → ∗)
ListF List A =
– This is the normal Scott-encoding, using the
– recursive ‘List’ provided by the pattern functor.
∀ {R : ∗} → R → (A → List A → R) → R

List : ∗ → ∗
List A = IFix ListF A

However, it is not immediately apparent how to use this to define mutually
recursive datatypes. The type of ifix is quite restrictive: we can only produce
something of kind k ⇒ ∗.
9 This is where the Scott encoding really departs from the Church encoding: the

recursive datatype itself appears in our encoding, since we are only doing a “one-
level” fold whereas the Church encoding gives us a full recursive fold over the entire
datastructure.



If we had kind-level products and an appropriate fixpoint operator, then
we could do this relatively easily by defining a singly recursive product of our
datatypes. However, we do not have products in our kind system.

But we can encode type-level products. In [32] the authors use the fact that
an n-tuple can be encoded as a function from an index to a value, and thus
type-level naturals can be used as the index of a type-level function to encode a
tuple of types. We take a similar approach except that we will not use a natural
to index our type, but rather a richer datatype. This will prove fruitful when
encoding parameterized types.

Let’s consider an example: the mutually recursive types of trees and forests.

mutual
data Tree0 (A : ∗) : ∗ where

node0 : A → Forest0 A → Tree0 A

data Forest0 (A : ∗) : ∗ where
nil0 : Forest0 A
cons0 : Tree0 A → Forest0 A → Forest0 A

First of all, we can rewrite this with a “tag” datatype indicating which of the
two cases in our datatype we want to use. That allows us to use a single data
declaration to cover both of the types. Moreover, the tag can include the type
parameters of the datatype, which is important in the case that they differ
between the different datatypes.

data TreeForestt : ∗ where
– ‘Treet A’ tags the type ‘Tree A’
Treet : ∗ → TreeForestt

– ‘Forestt A’ tags the type ‘Forest A’
Forestt : ∗ → TreeForestt

module Single where
– This mutual recursion is not strictly necessary,
– and is only there so we can define the ’Tree’
– and ‘Forest’ aliases for legibility.
mutual
– Type alias for the application of the main
– datatype to the ‘Tree’ tag
Tree : ∗ → ∗
Tree A = TreeForest (Treet A)

– Type alias for the application of the main
– datatype to the ‘Forest’ tag
Forest : ∗ → ∗
Forest A = TreeForest (Forestt A)

data TreeForest : TreeForestt → ∗ where



node : ∀ {A} → A → Tree A → Tree A
nil : ∀ {A} → Forest A
cons : ∀ {A} → Tree A → Forest A → Forest A

That has eliminated the mutual recursion, but we still have a number of prob-
lems:

– We are relying on Agda’s data declarations to handle recursion, rather than
our fixpoint combinator.

– We are using inductive families, which we don’t have a way to encode.
– TreeForestt is being used at the kind level, but we don’t have a way to

encode datatypes at the kind level.

Fortunately, we can get past all of these problems. Firstly we need to make our
handling of the different constructors more uniform by encoding them as sums
of products.

module Constructors where
mutual

Tree : ∗ → ∗
Tree A = TreeForest (Treet A)

Forest : ∗ → ∗
Forest A = TreeForest (Forestt A)

– This chooses the type of the constructor
– given the tag
TreeForestF : TreeForestt → ∗
– The ‘Tree’ constructor takes a pair of
– an ‘A’ and a ‘Forest A’
TreeForestF (Treet A) = A × Forest A
– The ‘Forest’ constructor takes either nothing,
– or a pair of a ‘Tree A’ and a ‘Forest A’
TreeForestF (Forestt A) = ⊤ ⊎ Tree A × Forest A

{-# NO_POSITIVITY_CHECK #-}
data TreeForest (tag : TreeForestt) : ∗ where

treeForest : TreeForestF tag → TreeForest tag

If we now rewrite TreeForestF to take the recursive type as a parameter instead
of using it directly, we can write this with ifix.

module IFixed where
TreeForestF : (TreeForestt → ∗) → (TreeForestt → ∗)
TreeForestF Rec (Treet A) = A × Rec (Forestt A)
TreeForestF Rec (Forestt A) = ⊤ ⊎ Rec (Treet A) × Rec (Forestt A)

TreeForest : TreeForestt → ∗
TreeForest = IFix TreeForestF



Finally, we need to encode the remaining datatypes that we have used. The sums
and products in the right-hand-side of TreeForestF should be Scott-encoded as
usual, since they represent the constructors of the datatype.

The tag type is more problematic. The Scott encoding of the tag type we
have been using would be:

Scott-tag = ∀ {R : ∗} → (∗ → R) → (∗ → R) → R

However, we do not have polymorphism at the kind level! But if we look at how
we use the tag we see that we only ever match on it to produce something of
kind ∗, and so we can get away with immediately instantiating this to ∗.

module Encoded where
– Tag type instantiated to ‘∗’
TreeForeste : ∗
TreeForeste = (∗ → ∗) → (∗ → ∗) → ∗

– Encoded ‘Treet’ tag
Treee : ∗ → TreeForeste

Treee A = λ T F → T A

– Encoded ‘Forestt’ tag
Foreste : ∗ → TreeForeste

Foreste A = λ T F → F A

TreeForestF : (TreeForeste → ∗) → (TreeForeste → ∗)
TreeForestF Rec tag =
– Pattern matching has been replaced by application
tag
– The encoded ‘Tree’ constructor
(λ A → ∀ {R} → (A → Rec (Foreste A) → R) → R)
– The encoded ‘Forest’ constructor
(λ A → ∀ {R} → R → (Rec (Treee A) → Rec (Foreste A) → R) → R)

TreeForest : TreeForeste → ∗
TreeForest = IFix TreeForestF

This, finally, gives us a completely System Fµ
ω -compatible encoding of our mu-

tually recursive datatypes.

Formal encoding of recursive datatypes. We define the compilation scheme
for recursive datatype bindings in Figure 11, along with a number of auxiliary
functions. We will reuse some of the functions from Figure 10, but many of them
need variants for the recursive case, which are denoted with a rec superscript.
Let’s go through the functions again, this time using Tree and Forest as examples:

d1 := data Tree A = (Node(A,ForestA)) with matchTree
d2 := data Forest A = (Nil(),Cons(TreeA,ForestA)) with matchForest



Throughout this figure when l, d, or c is an argument
l = let rec d in t

d = data X (Y :: K) = (c) with x

c = x(T )

Auxiliary functions
tagKind(l) = dataKind(d) ⇒ ∗
tagk(l, d) = λ(Y :: K).λ(X :: dataKind(d)).Xk Y

instk(f, l, d) = λ(Y :: K).f (tagk(l, d) Y )

family(l) = λ(r :: dataKind(d) ⇒ ∗) .λ(t :: tagKind(l)). let X = instj(r, l, dj)
j
in t dataTy(d)

instFamilyk(l, d) = λ(Y :: K). ifix family(l) (tagk(l, d) Y )

unveilrec(l, t) = t[X := instFamilyj(l, dj)]
j

constrreck,m(l, d, c) = Λ(Y :: K).λ(a : T ). wrap family(l) (tagk(l, d) Y ) (ΛR.λ(b : branchTy(c,R)). bm a)

constrsreck (l, d) = constrreck,j(l, d, cj)
j

matchreck (l, d) = Λ(Y :: K).λ(x : instFamilyk(l, d) Y ). unwrapx

Compilation function
Cdatarec(l) = (Λ(dataBind(d)).λ(constrBinds(d)).λ(matchBind(d)).t)

{instFamilyj(l, dj)
j
}

constrsrecj (l, dj)
j

matchrecj (l, dj)
j

Fig. 11: Compilation of recursive datatype bindings

– tagKind(l) defines the kind of the type-level tags for our datatype family,
which is a Scott-encoded tuple of types.

tagKind(l) = (∗ ⇒ ∗) ⇒ (∗ ⇒ ∗) ⇒ ∗

– tagk(l, d) defines the tag type for the datatype d in the family.

tag1(l,Tree) = λA.λ(v1 :: ∗ ⇒ ∗)(v2 :: ∗ ⇒ ∗).v1 A
tag2(l,Forest) = λA.λ(v1 :: ∗ ⇒ ∗)(v2 :: ∗ ⇒ ∗).v2 A

– instk(f, l, d) instantiates the family type f for the datatype d in the family
by applying it to the datatype tag.

inst1(f, l,Tree) = λA.f (tag1(l,Tree) A)
inst2(f, l,Forest) = λA.f (tag2(l,Forest) A)

– family(l) defines the datatype family itself. This takes a recursive argument
and a tag argument, and applies the tag to the Scott-encoded types of the
datatype components, where the types themselves are instantiated using the



recursive argument.

family(l) = λr t. let

Tree = inst1(r, l,Tree)
Forest = inst2(r, l,Forest)

in t dataTy(d1) dataTy(d2)

dataTy(d1) = λA.∀R.(A→ ForestA→ R) → R

dataTy(d2) = λA.∀R.R→ (TreeA→ ForestA→ R) → R

– instFamilyk(l, d) is the full recursive datatype family instantiated for the
datatype d, much like instk(f, l, d), but with the full datatype family.

instFamily1(l,Tree) = λA. ifix (family(l)) (tag1(l,Tree) A)

– unveilrec(l, t) “unveils” the datatypes as before, but unveils all the datatypes
and replaces them with the full recursive definition instead of just the Scott-
encoded type.

– constrreck,m(l, d, c) defines the constructor c of the datatype d in the family. It
is similar to before, but includes a use of wrap.

constrrec1,1 (l,Tree,Node) = ΛA.λ(v1 : A)(v2 : ForestA).

wrap (instFamily1(l,Tree)) A
(ΛR.λ(b1 : A→ ForestA→ R).b1 v1 v2)

constrrec2,1 (l,Forest,Nil) = ΛA.

wrap (instFamily2(l,Forest)) A
(ΛR.λ(b1 : R)(b2 : TreeA→ ForestA→ R).b1)

constrrec2,2 (l,Forest,Cons) = ΛA.λ(v1 : TreeA)(v2 : ForestA).

wrap (instFamily2(l,Forest)) A
(ΛR.λ(b1 : R)(b2 : TreeA→ ForestA→ R).b2 v1 v2)

– matchreck (l, d) defines the matcher of the datatype d as before, but includes
a use of unwrap.

matchrec1 (l,Tree) = ΛA.λ(v : TreeA). unwrap v

matchrec2 (l,Forest) = ΛA.λ(v : ForestA). unwrap v

5 Compiler implementation in Agda

As a supplement to the presentation in this paper, we have written a formali-
sation of a FIR compiler in Agda.10 The compiler includes the syntax, the type
system (the syntax is intrinsically typed, so there is no need for a typechecker),
and implementations of several of the passes. In particular, we have implemented:
10 The complete source can be found in the Plutus repository.

https://github.com/IntersectMBO/plutus/tree/3008f78ed7f75cdd98da7fb06f06345fc52c2e31/papers/unraveling-recursion


– Type-level compilation of mutually recursive datatypes into System Fµ
ω types.

– Term-level compilation of mutually recursive terms into System Fµ
ω terms.

The Agda presentation uses an intrinsically-typed syntax, where terms are iden-
tified with their typing derivations [2]. This means that the compilation process
is provably kind- and type-preserving.

However, the implementation is incomplete. The formalization is quite in-
volved since the term-level parts of datatypes (constructors) must exactly line
up with the type-level parts. Moreover, we have not proved any soundness results
beyond type preservation. The complexity of the encodings makes it very hard
to prove soundness. The artifact contains some further notes on the difficulties
in the implementation.

6 Optimization

FIR has the virtue that it is significantly easier to optimize than System Fµ
ω .

Here are two examples.

6.1 Dead binding elimination

Languages with let terms admit a simple form of dead code elimination: any
bindings in let terms which are unused can be removed. A dead binding in a
FIR term can be easily identified by constructing a dependency graph over the
variables in the term, and eliminating any bindings for unreachable variables.

We can certainly do something with the compiled form of simple, non-
recursive let bindings in System Fµ

ω . These are compiled to immediately-applied
lambda abstractions, which is an easy pattern to identify, and it is also easy to
work out whether the bound variable is used.

Recursive let bindings are much trickier. Here the compiled structure is ob-
scured by the fixpoint combinator and the construction and deconstruction of
the encoded tuple, which makes the pattern much harder to spot. Datatype
bindings are similarly complex.

The upshot is that it is much easier to perform transformations based on
the structure of variable bindings when those bindings are still present in their
original form.

6.2 Case-of-known-constructor

The case-of-known-constructor optimization is very important for functional pro-
gramming languages with datatypes (see e.g. [26, section 5]). When we perform
a pattern-match on a term which we know is precisely a constructor invocation,
we can collapse the immediate construction and deconstruction.

For example, we should be able to perform the following transformation:

match {Int} (Just {Int} 1) 0 (λx.x+ 1) =⇒ (λx.x+ 1) 1



This is easy to implement in FIR, since we still have the knowledge of which
constructors and destructors belong to the same datatype. But once we have
compiled to System Fµ

ω we lose this information. A destructor-constructor pair
is just an inner redex of the term, which happens to reduce nicely. But reducing
arbitrary redexes is risky (since we have no guarantee that it will not grow the
program), and we do not know of a general approach which would identify these
redexes as worth reducing.

7 Why not support these features natively?

The techniques in this paper cause a significant amount of runtime overhead.
The combinator-based approach to defining recursive functions requires many
more reductions than a direct implementation which could implement recursive
calls by jumping directly to the code pointer for the recursive function.

Similarly, representing datatype values as functions is much less efficient than
representing them as tagged data.

However, there are tradeoffs here for the language designer. If the language is
intended to be a competitive general-purpose programming language like Haskell,
then these performance losses may be unacceptable. On the other hand, if we
care less about performance and more about correctness, then the benefits of
having a minimal, well-studied core may dominate.

Moreover, even if a language has a final target language which provides these
features natively, a naive but higher-assurance backend can provide a useful
alternative code generator to test against.

Of course, the proof is in the pudding, and we have practical experience using
these techniques in the Plutus platform [16]. Experience shows that the overhead
proves not to be prohibitive: the compiler is able to compile and run substantial
real-world Haskell programs, and is available for public use at [17].

8 Related work

8.1 Encoding recursive datatypes

Different approaches to encoding datatypes are compared in [19]. The authors
provide a schematic formal description of Scott encoding, but ours is more thor-
ough and includes complete handling of recursive types.

Indexed fixpoints are used in [32] to encode regular and mutually recursive
datatypes as fixpoints of pattern functors. We use the same fixpoint operator
— they call it “hfix”, while we call it “ifix”. They also use the trick of encoding
products with a tag, but they use the natural numbers as an index, and they do
not handle parameterized types. Later work in [21] does handle parameterized
types, but our technique of putting the parameters into the tag type appears to
be novel. Neither paper handles non-regular datatypes.

There are other implementations of System Fω with recursive types. Brown
and Palsberg [6] use isorecursive types, and includes an indexed fixpoint operator



as well as a typecase operator. However, the index for the fixpoint must be of
kind ∗, whereas ours may be of any kind. Cai et al. [7] differ from this paper
both in using equirecursive types and in that their fixpoint operator only works
at kind ∗. Moreover, algebraic datatypes are supported directly, rather than via
encoding.

8.2 Encoding recursive terms

There is very little existing material on compiling multiple mutually recursive
functions, especially in a strict language. Some literature targets lower-level or
specialized languages ([15,31,23]), whereas ours is a much more standard cal-
culus. There are some examples which use fixpoint combinators (such as [18],
extending [13] for typed languages) which use different fixpoint combinators.

8.3 Intermediate representations

GHC Haskell is well-known for using a fairly small lambda-calculus-based IR
(“Core”) for almost all of its intermediary work [26]. FIR is very inspired by GHC
Core, but supports far fewer features and is aimed at eliminating constructs like
datatypes and recursion, whereas they are native features of GHC Core.

A more dependently-typed IR is described in [25]. We have not yet found the
need to generalize our base calculus to a dependently-typed one like Henk, but
all the techniques in this paper should still apply in such a setting. Extensions to
Henk that handle let-binding and datatypes are discussed, but it appears that
these are intended as additional native features rather than being compiled away
into a base calculus.

9 Conclusion

We have presented FIR, a reusable, typed IR which provides several typical
functional programming language features. We have shown how to compile it
into System Fµ

ω via a series of local compilation passes, and given a reference
implementation for the compiler.

There is more work to do on the theory and formalisation of FIR. We have
not given a direct semantics, in terms of reduction rules or otherwise. We would
also like to prove our compilation correct, in that it commutes with reduction. A
presentation of a complete compiler written in Agda with accompanying proofs
would be desirable.

We could also remove some of the restrictions present in this paper: in par-
ticular the lack of mutually recursive type bindings, and the requirement that
recursive let terms be homogeneous.

Acknowledgments. The authors would like to thank Mario Alvarez-Picallo and
Manuel Chakravarty for their comments on the manuscript, as well as IOHK for
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