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Abstract

This is intended to be a reference guide for developers who want to utilise the Plutus Core infrastructure.
We lay out the grammar and syntax of untyped Plutus Core terms, and their semantics and evaluation rules.
We also describe the built-in types and functions. The Appendices include a list of supported builtins in
each era and some aspects of Plutus Core which have been mechanically formalised.

This document only describes untyped Plutus Core: a subsequent version will also include the syntax
and semantics of Typed Plutus Core and describe its relation to untyped Plutus Core.
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Chapter 1

Preliminaries

1.1 Introduction
Plutus Core (more correctly, Untyped Plutus Core) is an eagerly-evaluated version of the untyped lambda
calculus extended with some “built-in” types and functions; it is intended for the implementation of val-
idation scripts on the Cardano blockchain. This document presents the syntax and semantics of Plutus
Core, a specification of an efficient evaluator, a description of the built-in types and functions available in
various releases of Cardano, and a specification of the binary serialisation format used by Plutus Core.

Since Plutus Core is intended for use in an environment where computation is potentially expensive
and excessively long computations can be problematic we have also developed a costing infrastructure for
Plutus Core programs. A description of this will be added in a later version of this document.

We also have a typed version of Plutus Core which provides extra robustness when untyped Plutus
Core is used as a compilation target, and we will eventually provide a specification of the type system and
semantics of Typed Plutus Core here as well, together with its relationship to Untyped Plutus Core.

1.2 Some basic notation
We begin with some notation which will be used throughout the document.

1.2.1 Sets
• The symbol ⊎ denotes a disjoint union of sets; for emphasis we often use this to denote the union

of sets which we know to be disjoint.
• Given a set 𝑋, 𝑋∗ denotes the set of finite sequences of elements of 𝑋:

𝑋∗ =
⨄

{𝑋𝑛 ∶ 𝑛 ∈ ℕ}.

• ℕ = {0, 1, 2, 3,…}.
• ℕ+ = {1, 2, 3,…}.
• ℕ[𝑎,𝑏] = {𝑛 ∈ ℕ ∶ 𝑎 ≤ 𝑛 ≤ 𝑏}.
• 𝔹 = ℕ[0,255], the set of 8-bit bytes.
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• 𝔹∗ is the set of all bytestrings.
• 𝕓 = {𝟶, 𝟷}, the set of bits.
• 𝕓∗ is the set of all bitstrings.
• ℤ = {… ,−2,−1, 0, 1, 2,…}.
• 𝔽𝑞 denotes a finite field with 𝑞 elements (𝑞 a prime power).
• 𝔽 ∗

𝑞 denotes the multiplicative group of nonzero elements of 𝔽𝑞 .
• 𝕌 denotes the set of Unicode scalar values, as defined in [44, Definition D76].
• 𝕌∗ is the set of all Unicode strings.
• We assume that there is a special symbol × which does not appear in any other set we mention. The

symbol × is used to indicate that some sort of error condition has occurred, and we will often need
to consider situations in which a value is either × or a member of some set 𝑆. For brevity, if 𝑆 is a
set then we define

𝑆× ∶= 𝑆 ⊎ {×}.

1.2.2 Lists
• The symbol [] denotes an empty list.
• The notation [𝑥𝑚,… , 𝑥𝑛] denotes a list containing the elements 𝑥𝑚,… , 𝑥𝑛. If 𝑚 > 𝑛 then the list is

empty.
• The length of a list 𝐿 is denoted by 𝓁(𝐿).
• Given two lists𝐿 = [𝑥1,… , 𝑥𝑚] and𝐿′ = [𝑦1,… , 𝑦𝑛],𝐿⋅𝐿′ denotes their concatenation [𝑥1,… , 𝑥𝑚,
𝑦1,… , 𝑦𝑛].

• Given an object 𝑥 and a list 𝐿 = [𝑥1,… , 𝑥𝑛], we denote the list [𝑥, 𝑥1,… , 𝑥𝑛] by 𝑥⋅𝐿.
• Given a list 𝐿 = [𝑥1,… , 𝑥𝑛] and an object 𝑥, we denote the list [𝑥1,… , 𝑥𝑛, 𝑥] by 𝐿⋅𝑥.
• Given a syntactic category 𝑉 , the symbol 𝑉 denotes a possibly empty list [𝑉1,… , 𝑉𝑛] of elements
𝑉𝑖 ∈ 𝑉 .

1.2.3 Bytestrings and bitstrings
We make frequent use of bytestrings and bitstrings and for the sake of conciseness we occasionally use
special notation. We also define conversion functions between bytestrings and bistrings

• We typically index the bytes in bytestrings starting from the left end but the bits in bitstrings from
the right end.

• The bytestring [𝑐0,… , 𝑐𝑛] may be denoted by 𝑐0⋯𝑐𝑛 (𝑛 ≥ 1, 𝑐𝑖 ∈ 𝔹); the empty bytestring may be
denoted by 𝜖.
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• The bitstring [𝑏𝑛,… , 𝑏0] may be denoted by 𝑏𝑛⋯𝑏0 (𝑛 ≥ 1, 𝑏𝑖 ∈ 𝕓); the empty bitstring may
be denoted by 𝜖: we also use this symbol for the empty bytestring, but this should not cause any
confusion.

• In the special case of bitstrings sometimes use notation such as 101110 to denote the list [1, 0, 1, 1, 1, 0];
we use a teletype font to avoid confusion with decimal numbers.

• A bytestring can naturally be viewed as a bitstring whose length is a multiple of 8 simply by con-
catenating the bits of the individual bytes, and vice-versa (by breaking the bitstring into groups of
8 bits). To make this precise we define two conversion functions 𝖻𝗂𝗍𝗌 ∶ 𝔹∗ → 𝕓∗ and 𝖻𝗒𝗍𝖾𝗌 ∶ {𝑠 ∈
𝕓∗ ∶ 8 ∣ 𝓁(𝑠)} → 𝔹∗. These depend on the fact that any 𝑐 ∈ 𝔹 can be written uniquely in the form
Σ7
𝑖=02

𝑖𝑏𝑖 with 𝑏0,… , 𝑏7 ∈ 𝕓.
– 𝖻𝗂𝗍𝗌([𝑐0,… , 𝑐𝑛−1]) = [𝑏8𝑛−1,… , 𝑏0] where 𝑐𝑗 = Σ7

𝑖=02
𝑖𝑏8(𝑛−𝑗−1)+𝑖

– 𝖻𝗒𝗍𝖾𝗌([𝑏8𝑛−1,… , 𝑏0]) = [𝑐0,… , 𝑐𝑛−1] where 𝑐𝑗 = Σ7
𝑖=02

𝑖𝑏8(𝑛−𝑗−1)+𝑖.

1.2.4 Miscellaneous notation
• Given integers 𝑘 ∈ ℤ and 𝑛 ≥ 1 we write 𝑘 mod 𝑛 = min{𝑟 ∈ ℤ ∶ 𝑟 ≥ 0 and 𝑛|𝑘 − 𝑟}
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Chapter 2

Untyped Plutus Core

2.1 The grammar of Plutus Core
This section presents the grammar of Plutus Core in a Lisp-like form. This is intended as a specification
of the abstract syntax of the language; it may also by used by tools as a concrete syntax for working with
Plutus Core programs, but this is a secondary use and we do not make any guarantees of its completeness
when used in this way. The primary concrete form of Plutus Core programs is the binary format described
in Appendix C.

2.1.1 Lexical grammar

Name 𝑛 ∶∶= [a-zA-Z][a-zA-Z0-9_']* name
Var 𝑥 ∶∶= 𝑛 term variable
BuiltinName 𝑏𝑛 ∶∶= 𝑛 built-in function name
Version 𝑣 ∶∶= [0-9]+.[0-9]+.[0-9]+ version
Natural 𝑘 ∶∶= [0-9]+ a natural number
Constant 𝑐 ∶∶= ⟨literal constant⟩

Figure 2.1: Lexical grammar of Plutus Core
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2.1.2 Grammar

Term 𝐿,𝑀,𝑁 ∶∶= 𝑥 variable
(con T 𝑐) constant
(builtin 𝑏) builtin
(lam 𝑥 𝑀) 𝜆 abstraction
[𝑀 𝑁] function application
(delay𝑀) delay execution of a term
(force𝑀) force execution of a term
(constr 𝑘 𝑀0…𝑀𝑚−1) constructor with tag 𝑘 and 𝑚 arguments
(case𝑀 𝑁0…𝑁𝑚−1) case analysis with 𝑚 alternatives
(error) error

Program 𝑃 ∶∶= (program 𝑣 𝑀) versioned program

Figure 2.2: Grammar of untyped Plutus Core

2.1.3 Notes
Version numbers. The version number at the start of a program specifies the Plutus Core language
version used in the program.

A Plutus Core language version describes a version of the basic language with a particular set of
features. A language version consists of three non-negative integers separated by decimal points, for
example 1.4.2. Language versions are ordered lexicographically.

The grammar above describes Plutus Core version 1.1.0. Version 1.0.0 is identical, except that constr
and case are not included. Version 1.0.0 is fully forward-compatible with version 1.1.0, so any valid ver-
sion 1.0.0 program is also a valid version 1.1.0 program. The semantics, evaluator and serialisation formats
described later in this document all apply to both versions, except that it is an error to use constr or case
in any program with a version prior to 1.1.0: a parser, deserialiser, or evaluator should fail immediately if
constr or case is encountered when processing such a program.

Scoping. For simplicity, we assume throughout that the body of a Plutus Core program is a closed
term, ie, that it contains no free variables. Thus (program 1.0.0 (lam x x)) is a valid program but
(program 1.0.0 (lam x y)) is not, since the variable y is free. This condition should be checked
before execution of any program commences, and the program should be rejected if its body is not closed.
The assumption implies that any variable 𝑥 occurring in the body of a program must be bound by an
occurrence of lam in some enclosing term; in this case, we always assume that 𝑥 refers to the most recent
(ie, innermost) such binding.

Iterated applications. An application of a term𝑀 to a term𝑁 is represented by [𝑀𝑁]. We may occa-
sionally write [𝑀𝑁1…𝑁𝑘] or [𝑀𝑁] as an abbreviation for an iterated application [… [[𝑀 𝑁1] 𝑁2]…
𝑁𝑘], and tools may also use this as concrete syntax.

Constructors and case analysis Plutus Core supports creating structured data using constr and de-
constructing it using case. Both of these terms are unusual in that they have (possibly empty) lists of
children: constr has the (0-based) tag and then a list of arguments; case has a scrutinee and then a list
of case branches. Their behaviour is mostly straightforward: constr evaluates its arguments and forms
a value; case evaluates the scrutinee into a constr value, selects the branch corresponding to the tag on
the value, and then applies that to the arguments in the value. The only thing to note is that case does
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not strictly evaluate the case branches, only applying (and hence evaluating) the one that is eventually
selected.

Constructor tags Constructor tags can in principle be any natural number. In practice, since they cannot
be dynamically constructed, we can limit them to a fixed size without having to worry about overflow. So
we limit them to 64 bits, although this is currently only enforced in the binary format (Appendix C).

Built-in types and functions. The language is parameterised by a set U of built-in types (we some-
times refer to U as the universe) and a set B of built-in functions (builtins for short), both of which are
sets of Names. Briefly, the built-in types represent sets of constants such as integers or strings; constant
expressions (con T 𝑐) represent values of the built-in types (the integer 123 or the string "string", for
example), and built-in functions are functions operating on these values, and possibly also general Plutus
Core terms. Precise details are given in Section 2.2.

See Section 4.3 for a description of the types and functions which have already been deployed on the
Cardano blockchain (or will be in the near future).

De Bruijn indices. The grammar defines names to be textual strings, but occasionally (specifically in
Appendix C) we want to use de Bruijn indices ([24], [12, C.3]), and for this we redefine names to be
natural numbers. In de Bruijn terms, 𝜆-expressions do not need to bind a variable, but in order to re-use
our existing syntax we arbitrarily use 0 for the bound variable, so that all 𝜆-expressions are of the form
(lam 0 𝑀); other variables (ie, those not appearing immediately after a lam binder) are represented by
natural number greater than zero.

Lists in constructor and case terms The grammar defines constructor and case terms to have a variable
number of subterms written in sequence with no delimiters. This corresponds to the concrete syntax, e.g.
we write (constr 0 𝑡1 𝑡2 𝑡3). However, in the rest of the specification we will abuse notation and treat
these terms as having lists of subterms.

2.2 Interpretation of built-in types and functions
As mentioned above, Plutus Core is generic over a universe U of types and a set B of built-in functions.
As the terminology suggests, built-in functions are interpreted as functions over terms and elements of the
built-in types: in this section we make this interpretation precise by giving a specification of built-in types
and functions in a set-theoretic denotational style. We require a considerable amount of extra notation in
order to do this, and we emphasise that nothing in this section is part of the syntax of Plutus Core: it is
meta-notation introduced purely for specification purposes.

2.2.1 Built-in types
We require some extra syntactic notation for built-in types: see Figure 2.3.

at ∶∶= 𝑛 Atomic type
op ∶∶= 𝑛 Type operator
T ∶∶= at | op(T,T, ...,T) Built-in type

Figure 2.3: Type names and operators
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We assume that we have a set U0 of atomic type names and a set O of type operator names. Each type
operator name op ∈ O has an argument count |op| ∈ ℕ+, and a type name op(T1,… ,T𝑛) is well-formed
if and only if 𝑛 = |op|. We define the universe U to be the closure of U0 under repeated applications of
operators in O:

U𝑖+1 = U𝑖 ∪ {op(T1,… ,T
|op|) ∶ op ∈ O,T1,… ,T

|𝑜𝑝| ∈ U𝑖}

U =
⋃

{U𝑖 ∶ 𝑖 ∈ ℕ+}

The universe U consists entirely of names, and the semantics of these names are given by denotations.
Each built-in type T ∈ U is associated with some mathematical set JTK, the denotation of T. For example,
we might have JboolK = {𝗍𝗋𝗎𝖾, 𝖿𝖺𝗅𝗌𝖾} and JintegerK = ℤ and J𝚙𝚊𝚒𝚛 (𝑎, 𝑏)K = J𝑎K × J𝑏K.

See Section 4.3 for a description of the types and functions which have already been deployed on the
Cardano blockchain (or will be in the near future).

For non-atomic type names T = op(T1,… ,T𝑟) we would generally expect the denotation of T to be
obtained in some uniform way (ie, parametrically) from the denotations of T1,… ,T𝑟; we do not insist on
this though.

2.2.1.1 Type variables
Built-in functions can be polymorphic, and to deal with this we need type variables. An argument of a
polymorphic function can be either restricted to built-in types or can be an arbitrary term, and we define
two different kinds of type variables to cover these two situations. See Figure 2.4.

TypeVariable tv ∶∶= 𝑛∗ fully polymorphic type variable
𝑛# built-in-polymorphic type variable

Figure 2.4: Type variables
We denote the set of all possible type variables by V, the set of all fully-polymorphic type variables by V∗,
and the set of all built-in-polymorphic type variables 𝑣# by V#. Note that V ∩ U = ∅ since the symbols
∗ and # do not occur in names in U. The two kinds of type variable are required because we have two
different types of polymorphism. Later on we will see that built-in functions can take arguments which
can be of a type which is unknown but must be in U, whereas other arguments can range over a larger set
of values such as the set of all Plutus Core terms. Type variables in V# are used in the former situation
and V∗ in the latter.

Given a variable 𝑣 ∈ V we sometimes write
𝑣 ∶∶ # if 𝑣 ∈ V#

and
𝑣 ∶∶ ∗ if 𝑣 ∈ V∗.

2.2.1.2 Polymorphic types
We also need to talk about polymorphic types, and to do this we define an extended universe of polymor-
phic types U# by adjoining V# to U0 and closing under type operators as before:

U#,0 = U0 ∪ V#
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U#,𝑖+1 = U#,𝑖 ∪ {op(T1,… ,T
|op|) ∶ op ∈ O,T1,… ,T

|𝑜𝑝| ∈ U#,𝑖}

U# =
⋃

{U#,𝑖 ∶ 𝑖 ∈ ℕ+}.

We will denote a typical element of U# by the symbol 𝑃 (possibly subscripted).
We define the set of free #-variables of an element of U# by

𝖥𝖵#(𝑃 ) = ∅ if 𝑃 ∈ U0

𝖥𝖵#(𝑣#) = {𝑣#}

𝖥𝖵#(op(𝑃1,… , 𝑃𝑘)) = 𝖥𝖵#(𝑃1) ∪ 𝖥𝖵#(𝑃2) ∪⋯ ∪ 𝖥𝖵#(𝑃𝑟).

Thus 𝖥𝖵#(𝑃 ) ⊆ V# for all 𝑃 ∈ U. We say that a type name 𝑃 ∈ U# is monomorphic if 𝖥𝖵#(𝑃 ) = ∅ (in
which case we actually have 𝑃 ∈ U); otherwise 𝑃 is polymorphic. The fact that type variables in U# are
only allowed to come from V# will ensure that values of polymorphic types such as lists and pairs can only
contain values of built-in types: in particular, we will not be able to construct types representing things
such as lists of Plutus Core terms.

2.2.1.3 Type assignments
A type assignment is a function 𝑆 ∶ 𝐷 → U where 𝐷 is some subset of V#. As usual we say that 𝐷 is the
domain of 𝑆 and denote it by dom𝑆.
We can extend a type assignment 𝑆 to a map �̂� ∶ U# ⊎ V∗ → U# ⊎ V∗ by defining

�̂�(𝑣#) = 𝑆(𝑣#) if 𝑣# ∈ dom𝑆

�̂�(𝑣#) = 𝑣# if 𝑣# ∈ V#∖ dom𝑆

�̂�(𝑇 ) = 𝑇 if 𝑇 ∈ U0

�̂�(op(𝑃1,… , 𝑃𝑛)) = op(�̂�(𝑃1),… , �̂�(𝑃𝑛))

�̂�(𝑣∗) = 𝑣∗ if 𝑣∗ ∈ V∗.

If 𝑃 ∈ U# and 𝑆 is a type assignment with 𝖥𝖵#(𝑃 ) ⊆ dom𝑆 then in fact �̂�(𝑃 ) ∈ U; in this case we
say that �̂�(𝑃 ) is an instance or a monomorphisation of 𝑃 (via 𝑆). If 𝑇 is an instance of 𝑃 then there is a
unique smallest 𝑆 (with 𝖥𝖵#(𝑃 ) = dom𝑆) such that 𝑇 = �̂�(𝑃 ): we write 𝑇 ⪯𝑆 𝑃 to indicate that 𝑇 is an
instance of 𝑃 via 𝑆 and 𝑆 is minimal.

Constructing type assignments. We say that a collection {𝑆𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} of type assignments is
consistent if 𝑆𝑖|𝐷𝑖𝑗 = 𝑆𝑗|𝐷𝑖𝑗 for all 𝑖 and 𝑗, where | denotes function restriction and 𝐷𝑖𝑗 = dom𝑆𝑖 ∩
dom𝑆𝑗 . If this is the case then (viewing functions as sets of pairs in the usual way) 𝑆1 ∪⋯ ∪ 𝑆𝑛 is also a
well-formed type assignment (each variable in its domain is associated with exactly one type).
Given 𝑇 ∈ U and 𝑃 ∈ U# it can be shown that 𝑇 ⪯𝑆 𝑃 if and only if one of the following holds:

• 𝑇 = 𝑃 and 𝑆 = ∅.
• 𝑃 ∈ V# and 𝑆 = {(𝑣#, 𝑇 )}.
• – 𝑇 = op(𝑇1,… , 𝑇𝑛) with each 𝑇𝑖 ∈ U.
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– 𝑃 = op(𝑃1,… , 𝑃𝑛) with each 𝑃𝑖 ∈ U#.
– 𝑇𝑖 ⪯𝑆𝑖 𝑃𝑖 for 1 ≤ 𝑖 ≤ 𝑛.
– {𝑆1,… , 𝑆𝑛} is consistent.
– 𝑆 = 𝑆1 ∪⋯ ∪ 𝑆𝑛.

This allows us to decide whether 𝑇 ∈ U is an instance of 𝑃 ∈ U# and, if so, to construct an 𝑆 with
𝑇 ⪯𝑆 𝑃 .

2.2.2 Built-in functions
2.2.2.1 Inputs to built-in functions
To treat the typed and untyped versions of Plutus Core uniformly it is necessary to make the machinery
of built-in functions generic over a set I of inputs which are taken as arguments by built-in functions. In
practice I will be the set of Plutus Core values or something very closely related.
We require I to have the following two properties:

• I is disjoint from JTK for all T ∈ U

• There should be disjoint subsets CT ⊆ I (where T ∈ U) of constants of type T and maps J⋅KT ∶
CT → JTK (denotation) and ⦃⋅⦄T ∶ JTK → CT (reification) such that ⦃J𝑐KT⦄T = 𝑐 for all 𝑐 ∈ CT.
We do not require these maps to be bijective (for example, there may be multiple inputs with the
same denotation), but the condition implies that J⋅KT is surjective and ⦃⋅⦄T is injective.

It is also convenient to let JIK = I and define both J⋅KI and ⦃⋅⦄I to be the identity function.
For example, we could take I to be the set of all Plutus Core values (see Section 2.3.1), CT to be the set
of all terms of the form (con T 𝑐), and J⋅KT to be the function which maps (con T 𝑐) to 𝑐. For simplicity
we are assuming that mathematical entities occurring as members of type denotations JTK are embedded
directly as values 𝑐 in Plutus Core constant terms. In reality, tools which work with Plutus Core will need
some concrete syntactic representation of constants; we do not specify this here, but see Section 4.3 for
suggested syntax for the built-in types currently in use on the Cardano blockchain.

2.2.2.2 Signatures and denotations of built-in functions
We will consistently use the symbol 𝜏 and subscripted versions of it to denote members of U# ⊎V∗ in the
rest of the document; these indicate the types of values consumed and returned by built-in functions.
We also define a class of quantifications which are used to introduce type variables: a quantification is a
symbol of the form ∀𝑣 with 𝑣 ∈ V; the set of of all possible quantifications is denoted by Q.

Signatures. Every built-in function 𝑏 ∈ B has a signature 𝜎(𝑏) which describes the types of its argu-
ments and its return value: a signature is of the form

[𝜄1,… , 𝜄𝑛] → 𝜏

with
• 𝜄𝑗 ∈ U# ⊎ V∗ ⊎ Q for all 𝑗
• 𝜏 ∈ U# ⊎ V∗
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• |{𝑗 ∶ 𝜄𝑗 ∉ Q}| ≥ 1 (so 𝑛 ≥ 1)
• If 𝜄𝑗 involves 𝑣 ∈ V then 𝜄𝑘 = ∀𝑣 for some 𝑘 < 𝑗, and similarly for 𝜏; in other words, any type

variable 𝑣 must be introduced by a quantification before it is used. (Here 𝜄 involves 𝑣 if either
𝜄 = T ∈ U# and 𝑣 ∈ 𝖥𝖵#(T) or 𝜄 = 𝑣 and 𝑣 ∈ V∗.)

• If 𝜏 involves 𝑣 ∈ V then some 𝜄𝑗 must involve 𝑣; this implies that 𝖥𝖵#(𝜏) ⊆
⋃

{𝖥𝖵#(𝜄𝑗) ∶ 𝜄𝑗 ∈ U#}.
• If 𝑗 ≠ 𝑘 and 𝜄𝑗 , 𝜄𝑘 ∈ Q then 𝜄𝑗 ≠ 𝜄𝑘; ie, no quantification appears more than once.
• If 𝜄𝑖 = ∀𝑣 ∈ Q then some 𝑖𝑗 ∉ Q with 𝑗 > 𝑖 must involve 𝑣 (signatures are not allowed to contain

phantom type variables).

For example, in our default set of built-in functions we have the functions mkCons with signature [∀𝑎#, 𝑎#,
𝚕𝚒𝚜𝚝 (𝑎#)] → 𝚕𝚒𝚜𝚝 (𝑎#) and ifThenElse with signature [∀𝑎∗, 𝚋𝚘𝚘𝚕, 𝑎∗, 𝑎∗] → 𝑎∗. When we use mkCons
its arguments must be of built-in types, but the two final arguments of ifThenElse can be any Plutus
Core values.
If 𝑏 has signature [𝜄1,… , 𝜄𝑛] → 𝜏 then we define the arity of 𝑏 to be

𝛼(𝑏) = [𝜄1,… , 𝜄𝑛].

We also define
𝜒(𝑏) = 𝑛.

We may abuse notation slightly by using the symbol 𝜎 to denote a specific signature as well as the function
which maps built-in function names to signatures, and similarly with the symbol 𝛼.
Given a signature 𝜎 = [𝜄1,… , 𝜄𝑛] → 𝜏, we define the reduced signature �̄� to be

�̄� = [𝜄𝑗 ∶ 𝜄𝑗 ∉ Q] → 𝜏

Here we have extended the usual set comprehension notation to lists in the obvious way, so �̄� just denotes
the signature 𝜎 with all quantifications omitted. We will often write a reduced signature in the form
[𝜏1,… , 𝜏𝑚] → 𝜏 to emphasise that the entries are types, and ∀ does not appear.
Also, given an arity = [𝜄1,… , 𝜄𝑛], the reduced arity is

�̄� = [𝜄𝑗 ∶ 𝜄𝑗 ∉ Q].

Commentary. What is the intended meaning of the notation introduced above? In Typed Plutus Core
we have to instantiate polymorphic functions (both built-in functions and polymorphic lambda terms) at
concrete types before they can be applied, and in Untyped Plutus Core instantiation is replaced by an
application of force. When we are applying a built-in function we supply its arguments one by one, and
we can also apply force (or perform type instantiation in the typed case) to a partially-applied builtin
“between” arguments (and also after the final argument); no computation occurs until all arguments have
been supplied and all forces have been applied. The arity (read from left to right) specifies what types
of arguments are expected and how they should be interleaved with applications of force, and 𝜒(𝑏) tells
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you the total number of arguments and applications of force that a built-in function 𝑏 requires. A fully-
polymorphic type variable 𝑎∗ indicates that an arbitrary value from I can be provided, whereas a type from
U# indicates that a value of the specified built-in type is expected. Occurrences of quantifications indicate
that force is to be applied to a partially-applied builtin; we allow this purely so that partially-applied
builtins can be treated in the same way as delayed lambda-abstractions: force has no effect unless it is
the very last item in the signature. In Plutus Core, partially-applied builtins are values which can be treated
like any others (for example, by being passed as an argument to a lam-expression): see Section 2.3.1.

2.2.2.3 Denotations of built-in functions
The basic idea is that a built-in function 𝑏 should represent some mathematical function on the denotations
of the types of its inputs. However, this is complicated by the presence of polymorphism and we have to
require that there is such a function for every possible monomorphisation of 𝑏.

More precisely, suppose that we have a builtin 𝑏 with reduced signature [𝜏1,… 𝜏𝑛] → 𝜏. For every
type assignment 𝑆 with dom𝑆 = 𝖥𝖵#(𝜏1) ∪ ⋯ ∪ 𝖥𝖵#(𝜏𝑛) (which contains 𝖥𝖵#(𝜏) by the conditions on
signatures in Section 2.2.2.2) we require a denotation of 𝑏 at 𝑆, a function

J𝑏K𝑆 ∶ J�̂�(𝜏1)K ×⋯ × J�̂�(𝜏𝑛)K → J�̂�(𝜏)K×.

where
J𝑣∗K = I for 𝑣∗ ∈ V∗.

This makes sense because �̂�(𝜏𝑖) ∈ U ⊎ I for all 𝑖, so J�̂�(𝜏𝑖)K is always defined, and similarly for 𝜏.
If 𝖥𝖵#(�̄�(𝑏)) = ∅ (in which case we say that 𝑏 is monomorphic) then the only relevant type assignment
will be the empty one; in this case we have a single denotation

J𝑏K∅ ∶ J𝜏1K ×⋯ × J𝜏𝑛K → J𝜏K×.

Denotations of builtins are mathematical functions which terminate on every possible input; the symbol
× can be returned by a function to indicate that something has gone wrong, for example if an argument is
out of range.
In practice we expect most builtins to be parametrically polymorphic [46, 39], so that the denotation J𝑏K𝑆will be the “same” for all type assignments 𝑆; we do not insist on this though.

2.2.2.4 Results of built-in functions.
If 𝑟 is the result of the evaluation of some built-in function there are thus three possibilities:

1. 𝑟 ∈ JTK for some T ∈ U.
2. 𝑟 ∈ I.
3. 𝑟 = ×.

In other words,
𝑟 ∈ R ∶=

⨄

{JTK ∶ T ∈ U} ⊎ I ⊎ {×}.

Our assumptions on the set I (Section 2.2.2.1) allow us define a function
⦃⋅⦄ ∶ R → I×

which converts results of built-in functions back into inputs (or the × symbol):
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1. If 𝑟 ∈ JTK, then ⦃𝑟⦄ = ⦃𝑟⦄T ∈ CT ⊆ I.
2. If 𝑟 ∈ I then ⦃𝑟⦄ = 𝑟.
3. ⦃×⦄ = ×.

2.2.2.5 Parametricity for *-polymorphic arguments
A built-in function 𝑏 can only inspect arguments which are values of built-in types; other arguments
(occurring as 𝑎∗ in �̄�(𝑏)) are treated opaquely, and can be discarded or returned as (part of) a result, but
cannot be altered or examined (in particular, they cannot be compared for equality): 𝑏 is parametrically
polymorphic in such arguments. This implies that if a builtin returns a value 𝑣 ∈ I, then 𝑣must have been
an argument of the function.

2.2.3 Evaluation of built-in functions
2.2.3.1 Compatibility of inputs and signature entries
The previous section describes how a built-in function is interpreted as a mathematical function. When a
Plutus Core built-in function 𝑏 is applied to a sequence of arguments, the arguments must have types which
are compatible with the signature of 𝑏; for example, if 𝑏 has signature [∀𝑎#,∀𝑏#, 𝑎#, 𝑏#, 𝑎#, 𝑐∗, 𝑐∗] → 𝑐∗and 𝑏 is applied to a sequence of inputs 𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5 then 𝑉1, 𝑉2, and 𝑉3 must all be constants of some
monomorphic built-in types and the types of 𝑉1 and 𝑉3 must be the same; 𝑉4 and 𝑉5 can be arbitrary
inputs. This section describes the conditions for type compatibility.
In detail, given a reduced arity �̄� = [𝜏1,… , 𝜏𝑛], a sequence 𝑉 = [𝑉1,… , 𝑉𝑚], and a type assignment 𝑆 we
say that 𝑉 is compatible with �̄� (via 𝑆) if and only if 𝑛 = 𝑚 and, letting 𝐼 = {𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛, 𝜏𝑖 ∈ U#} (so
𝜏𝑗 ∈ V∗ if 𝑗 ∉ 𝐼), there exist type assignments 𝑆𝑖 (1 ≤ 𝑖 ≤ 𝑛) such that all of the following are satisfied

• For all 𝑖 ∈ 𝐼 there exists 𝑇𝑖 ∈ U such that 𝑉𝑖 ∈ C𝑇𝑖 and 𝑇𝑖 ⪯𝑆𝑖 𝜏𝑖.
• {𝑆𝑖 ∶ 𝑖 ∈ 𝐼} is consistent (see Section 2.2.1.3).
• 𝑆 =

⋃

{𝑆𝑖 ∶ 𝑖 ∈ 𝐼}.
If these conditions are all satisfied then we can find suitable 𝑆𝑖 using the procedure described in Sec-
tion 2.2.1.3 and this allows us to construct 𝑆 explicitly since the 𝑆𝑖 are consistent. Note that in this case
dom𝑆 = dom𝑆1 ∪… ∪ dom𝑆𝑛 = 𝖥𝖵#(𝜏1) ∪⋯ ∪ 𝖥𝖵#(𝜏𝑛) = 𝖥𝖵#(𝛼), so 𝑆 is minimal in the sense that
no 𝑆′ with dom𝑆′ strictly smaller than dom𝑆 is sufficient to monomorphise all of the 𝜏𝑖 simultaneously.
We write

[𝑉1,… , 𝑉𝑚] ≈𝑆 [𝜏1,… , 𝜏𝑛]

in this case. If 𝑉 is not compatible with �̄� then we write 𝑉 ≉ �̄�.
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2.2.3.2 Evaluation
For later use we define a function 𝖤𝗏𝖺𝗅 which attempts to evaluate an application of a built-in function 𝑏
to a sequence of inputs [𝑉1,… , 𝑉𝑚]. This fails if the number of inputs is incorrect or if the inputs are not
compatible with �̄�(𝑏):

𝖤𝗏𝖺𝗅(𝑏, [𝑉1,… , 𝑉𝑛]) = × if [𝑉1,… , 𝑉𝑛] ≉ �̄�(𝑏).

Otherwise, the conditions for the existence of a denotation of 𝑏 are met and we can apply that denotation to
the denotations of the inputs and then reify the result. If [𝑉1,… , 𝑉𝑛] ≈𝑆 �̄�(𝑏) = [𝜏1,… , 𝜏𝑛], let 𝑇𝑖 = �̂�(𝜏𝑖)for 1 ≤ 𝑖 ≤ 𝑛; then we define

𝖤𝗏𝖺𝗅(𝑏, [𝑉1,… , 𝑉𝑛]) = ⦃J𝑏K𝑆 (J𝑉1K𝑇1 ,… , J𝑉𝑛K𝑇𝑛 )⦄.

It can be checked that the compatibility condition guarantees that this makes sense according to the defi-
nition of J𝑏K𝑆 in Section 2.2.2.3.

Notes.
• All of the machinery which we have defined for built-in functions is parametric over the set I of

inputs and the sets C𝑇 ⊆ I of constants. This also applies to the 𝖤𝗏𝖺𝗅 function, so its meaning is not
fully defined until we have given concrete definitions of the sets of inputs and constants.

• The error value × can occur in two different ways: either because the arguments are not compatible
with the signature, or because the builtin itself returns × to signal some error condition.

• The symbol × is not part of Plutus Core; when we define reduction rules and evaluators for Plu-
tus Core later some extra translation will be required to convert the result of 𝖤𝗏𝖺𝗅 into something
appropriate to the context.

2.3 Term reduction
This section defines the semantics of (untyped) Plutus Core.

2.3.1 Values in Plutus Core
The semantics of built-in functions in Plutus Core are obtained by instantiating the sets CT of constants
of type T (see Section 2.2.2.1) to be the expressions of the form (con T 𝑐) and the set I to be the set
of Plutus Core values, terms which cannot immediately undergo any further reduction, such as lambda
terms and delayed terms. Values also include partial applications of built-in functions such as [(builtin
modInteger) (con integer 5)], which cannot perform any computation until a second integer argu-
ment is supplied. However, partial applications must also be well-formed, in the sense that applications
of force must be correctly interleaved with genuine arguments, and the arguments must themselves be
values.

We define syntactic classes 𝑉 of Plutus Core values and 𝐴 of partial builtin applications simultane-
ously:
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Value 𝑉 ∶∶= (con T 𝑐)
(delay𝑀)
(lam 𝑥 𝑀)
(constr 𝑖 𝑉 )
𝐴

Figure 2.5: Values in Plutus Core
Here 𝐴 is the class of well-formed partial applications, and to define this we first define a class of possibly
ill-formed iterated applications 𝐵 for each built-in function 𝑏 ∈ B:

𝐵 ∶∶= (builtin 𝑏)
[𝐵 𝑉 ]
(force 𝐵)

Figure 2.6: Partial built-in function application
We let 𝖡 denote the set of terms generated by the grammar in Figure 2.6 and we define a function 𝛽 which
extracts the name of the built-in function occurring in a term in 𝖡:

𝛽((builtin 𝑏)) = 𝑏
𝛽([𝐵 𝑉 ]) = 𝛽(𝐵)
𝛽((force 𝐵)) = 𝛽(𝐵)

We also define a function ‖⋅‖ which measures the size of a term 𝐵 ∈ 𝖡:
‖(builtin 𝑏)‖ = 0
‖[𝐵 𝑉 ]‖ = 1 + ‖𝐵‖
‖(force 𝐵)‖ = 1 + ‖𝐵‖

Well-formed partial applications. A term 𝐵 ∈ 𝖡 is an application of 𝑏 = 𝛽(𝐵) to a number of values
in 𝑆, interleaved with applications of force. We now define what it means for 𝐵 to be a well-formed
partial application. Suppose that 𝛼(𝑏) = [𝜄1,… , 𝜄𝑛]. Firstly we require that ‖𝐵‖ < 𝑛, so that 𝑏 is not fully
applied; in this case we put 𝜄 = 𝜄

‖𝐵‖, the element of 𝑏’s signature which describes what kind of “argument”
𝑏 currently expects. The definition is completed by induction on the structure of 𝐵:

1. 𝐵 = (𝚋𝚞𝚒𝚕𝚝𝚒𝚗 𝑏) is always well-formed.
2. 𝐵 = [𝐵′ 𝑉 ] is well-formed if 𝐵′ is well-formed and 𝜄 ∈ U# or 𝜄 ∈ V∗ (equivalently, 𝜄 ∉ Q).
3. 𝐵 = (𝚏𝚘𝚛𝚌𝚎 𝐵′) is well-formed if 𝐵′ is well-formed and 𝜄 ∈ Q.

The definition of values in Figure 2.5 is now completed by defining 𝐴 to be the syntactic class of well-
formed partial built-in function applications:

𝐴 = {𝐵 ∈ 𝖡 ∶ 𝐵 is a well-formed partial application}.
Note that this definition does not impose any requirements of type correctness. For example, with the types
and functions defined in Section 4.3.1 the term𝑋 = [(builtin modInteger) (con string "blue")]
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is a valid value which could be treated like any other, for instance by being passed as an argument to a
lam expression. However, the evaluation rules described in the next section require that when a built-in
function 𝑏 becomes fully applied the types of the arguments are checked against the signature of 𝑏 using
the relation ≈ and the function 𝖤𝗏𝖺𝗅 defined in Sections 2.2.3.1 and 2.2.3.2, so an error would arise if the
term 𝑋 were ever applied to another argument.

More notation. Suppose that 𝐴 is a well-formed partial application with 𝛼(𝛽(𝐴)) = [𝜄1,… , 𝜄𝑛]. We
define a function 𝗇𝖾𝗑𝗍 which extracts the next argument (or force) expected by 𝐴:

𝗇𝖾𝗑𝗍(𝐴) = 𝜄
‖𝐴‖+1.

This makes sense because in a well-formed partial application 𝐴 we have ‖𝐴‖ < 𝑛.
We also define a function 𝖺𝗋𝗀𝗌 which extracts the arguments which 𝑏 has received so far in 𝐴:

𝖺𝗋𝗀𝗌((builtin 𝑏)) = []
𝖺𝗋𝗀𝗌([𝐴 𝑉 ]) = 𝖺𝗋𝗀𝗌(𝐴)⋅𝑉
𝖺𝗋𝗀𝗌((force 𝐴)) = 𝖺𝗋𝗀𝗌(𝐴).

2.3.2 Term reduction

We define the semantics of Plutus Core using contextual semantics (or reduction semantics): see [31]
or [29] or [32, 5.3], for example. We use 𝐴 to denote a partial application of a built-in function as in
Section 2.3.1 above. For builtin evaluation, we instantiate the set I of Section 2.2.2.1 to be the set of
Plutus Core values. Thus all builtins take values as arguments and return a value or ×. Since values are
terms here, we can take ⦃𝑉 ⦄ = 𝑉 .
The notation [𝑉 ∕𝑥]𝑀 below denotes substitution of the value 𝑉 for the variable 𝑥 in𝑀 . This is capture-
avoiding in that substitution is not performed on occurrences of 𝑥 inside subterms of 𝑀 of the form
(lam 𝑥 𝑁).
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Frame 𝑓 ∶∶= [_ 𝑀] left application
[𝑉 _] right application
(force _) force
(constr 𝑖 𝑉 _ 𝑀) constructor argument
(case _ 𝑀) case scrutinee

(a) Grammar of reduction frames for Plutus Core

𝑀 → 𝑀 ′

Term 𝑀 reduces in one step to term 𝑀 ′.

[(lam 𝑥 𝑀) 𝑉 ] → [𝑉 ∕𝑥]𝑀

𝓁(𝐴) = 𝜒(𝛽(𝐴)) − 1 𝗇𝖾𝗑𝗍(𝐴) ∈ U# ∪ V∗

[𝐴 𝑉 ] → 𝖤𝗏𝖺𝗅′(𝛽(𝐴), 𝖺𝗋𝗀𝗌(𝐴)⋅𝑉 )

𝓁(𝐴) < 𝜒(𝛽(𝐴)) − 1 𝗇𝖾𝗑𝗍(𝐴) ∈ U# ∪ V∗
[𝐴 𝑉 ] → [𝐴 𝑉 ]

(force (delay𝑀)) → 𝑀

0 ≤ 𝑖 ≤ 𝑚
(case (constr 𝑖 𝑉 ) 𝑈0…𝑈𝑚) → [𝑈𝑖 𝑉 ]

𝓁(𝐴) = 𝜒(𝛽(𝐴)) − 1 𝗇𝖾𝗑𝗍(𝐴) ∈ Q

(force 𝐴) → 𝖤𝗏𝖺𝗅′(𝛽(𝐴), 𝖺𝗋𝗀𝗌(𝐴))

𝓁(𝐴) < 𝜒(𝛽(𝐴)) − 1 𝗇𝖾𝗑𝗍(𝐴) ∈ Q

(force 𝐴) → 𝐴

𝑓{(error)} → (error)

𝑀 → 𝑀 ′

𝑓{𝑀} → 𝑓{𝑀 ′}

(b) Reduction via contextual semantics

𝖤𝗏𝖺𝗅′(𝑏, [𝑉1,… , 𝑉𝑛]) =

{

(error) if 𝖤𝗏𝖺𝗅(𝑏, [𝑉1,… , 𝑉𝑛]) = ×
𝖤𝗏𝖺𝗅(𝑏, [𝑉1,… , 𝑉𝑛]) otherwise

(c) Built-in function application
Figure 2.7: Term reduction for Plutus Core
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It can be shown that any closed Plutus Core term whose evaluation terminates yields either (error) or a
value. Recall from Section 2.1.3 that we require the body of every Plutus Core program to be closed.

2.4 The CEK machine
This section contains a description of an abstract machine for efficiently executing Plutus Core. This is
based on the CEK machine of Felleisen and Friedman [30].
The machine alternates between two main phases: the compute phase (⊳), where it recurses down the AST
looking for values, saving surrounding contexts as frames (or reduction contexts) on a stack as it goes; and
the return phase (⊲), where it has obtained a value and pops a frame off the stack to tell it how to proceed
next. In addition there is an error state ⬥ which halts execution with an error, and a halting state ◻ which
halts execution and returns a value to the outside world.

To evaluate a program (program 𝑣𝑀), we first check that the version number 𝑣 is valid, then start the
machine in the state []; []⊳𝑀 . It can be proved that the transitions in Figure 2.10 always preserve validity
of states, so that the machine can never enter a state such as [] ⊲ 𝑀 or 𝑠, (force _) ⊲ (lam 𝑥 𝐴 𝑀)
which isn’t covered by the rules. If such a situation were to occur in an implementation then it would
indicate that the machine was incorrectly implemented or that it was attempting to evaluate an ill-formed
program (for example, one which attempts to apply a variable to some other term).

State Σ ∶∶= 𝑠; 𝜌 ⊳𝑀 | 𝑠 ⊲ 𝑉 | ⬥ | ◻𝑉
Stack 𝑠 ∶∶= 𝑓 ∗

CEK value 𝑉 ∶∶= 〈con T 𝑐〉 | 〈delay𝑀 𝜌〉 | 〈lam 𝑥 𝑀 𝜌〉
| 〈constr 𝑖 𝑉 〉 | 〈builtin 𝑏 𝑉 𝜂〉

Environment 𝜌 ∶∶= [] | 𝜌[𝑥↦ 𝑉 ]
Expected builtin arguments 𝜂 ∶∶= [𝜄] | 𝜄⋅𝜂

Figure 2.8: Grammar of CEK machine states for Plutus Core

Frame 𝑓 ∶∶= (force _) force
[_ (𝑀,𝜌)] left application to term
[_ 𝑉 ] left application to value
[𝑉 _] right application of value
(constr 𝑖 𝑉 _ (𝑀,𝜌)) constructor argument
(case _ (𝑀,𝜌)) case scrutinee

Figure 2.9: Grammar of CEK stack frames

Figures 2.8 and 2.9 define some notation for states of the CEK machine: these involve a modified type
of value adapted to the CEK machine, environments which bind names to values, and a stack which
stores partially evaluated terms whose evaluation cannot proceed until some more computation has been
performed (for example, since Plutus Core is a strict language function arguments have to be reduced to
values before application takes place, and because of this a lambda term may have to be stored on the
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stack while its argument is being reduced to a value). Environments are lists of the form 𝜌 = [𝑥1 ↦
𝑉1,… , 𝑥𝑛 ↦ 𝑉𝑛] which grow by having new entries appended on the right; we say that 𝑥 is bound in the
environment 𝜌 if 𝜌 contains an entry of the form 𝑥 ↦ 𝑉 , and in that case we denote by 𝜌[𝑥] the value 𝑉
in the rightmost (ie, most recent) such entry.∗

To make the CEK machine fit into the built-in evaluation mechanism defined in Section 2.2 we define
I = 𝑉 and CT = {〈con T 𝑐〉 ∶ T ∈ U, 𝑐 ∈ JTK}.

The rules in Figure 2.10 show the transitions of the machine; if any situation arises which is not
included in these transitions (for example, if a frame [〈con T 𝑐〉 _] is encountered or if an attempt is made
to apply force to a partial builtin application which is expecting a term argument), then the machine stops
immediately in an error state.

∗The description of environments we use here is more general than necessary in that it permits a given variable to have multiple
bindings; however, in what follows we never actually retrieve bindings other than the most recent one and we never remove bindings
to expose earlier ones. The list-based definition has the merit of simplicity and suffices for specification purposes but in an imple-
mentation it would be safe to use some data structure where existing bindings of a given variable are discarded when a new binding
is added.
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Σ ↦ Σ′

Machine takes one step from state Σ to state Σ′

𝑠; 𝜌 ⊳ 𝑥 ↦ 𝑠 ⊲ 𝜌[𝑥] if 𝑥 is bound in 𝜌
𝑠; 𝜌 ⊳ (con T 𝑐) ↦ 𝑠 ⊲ 〈con T 𝑐〉
𝑠; 𝜌 ⊳ (lam 𝑥 𝑀) ↦ 𝑠 ⊲ 〈lam 𝑥 𝑀 𝜌〉
𝑠; 𝜌 ⊳ (delay𝑀) ↦ 𝑠 ⊲ 〈delay𝑀 𝜌〉
𝑠; 𝜌 ⊳ (force𝑀) ↦ (force _)⋅𝑠; 𝜌 ⊳𝑀
𝑠; 𝜌 ⊳ [𝑀 𝑁] ↦ [_ (𝑁, 𝜌)]⋅𝑠; 𝜌 ⊳𝑀

𝑠; 𝜌 ⊳ (constr 𝑖 𝑀 ⋅𝑀) ↦ (constr 𝑖 _ (𝑀,𝜌))⋅𝑠; 𝜌 ⊳𝑀
𝑠; 𝜌 ⊳ (constr 𝑖 []) ↦ 𝑠 ⊲ 〈constr 𝑖 []〉

𝑠; 𝜌 ⊳ (case𝑁 𝑀) ↦ (case _ (𝑀,𝜌))⋅𝑠; 𝜌 ⊳ 𝑁
𝑠; 𝜌 ⊳ (builtin 𝑏) ↦ 𝑠 ⊲ 〈builtin 𝑏 [] 𝛼(𝑏)〉
𝑠; 𝜌 ⊳ (error) ↦ ⬥

[] ⊲ 𝑉 ↦ ◻𝑉
[_ (𝑀,𝜌)]⋅𝑠 ⊲ 𝑉 ↦ [𝑉 _]⋅𝑠; 𝜌 ⊳𝑀

[〈lam 𝑥 𝑀 𝜌〉 _]⋅𝑠 ⊲ 𝑉 ↦ 𝑠; 𝜌[𝑥↦ 𝑉 ] ⊳𝑀
[_ 𝑉 ]⋅𝑠 ⊲ 〈lam 𝑥 𝑀 𝜌〉 ↦ 𝑠; 𝜌[𝑥↦ 𝑉 ] ⊳𝑀

[〈builtin 𝑏 𝑉 (𝜄⋅𝜂)〉 _]⋅𝑠 ⊲ 𝑉 ↦ 𝑠 ⊲ 〈builtin 𝑏 (𝑉 ⋅𝑉 ) 𝜂〉 if 𝜄 ∈ U# ∪ V∗

[_ 𝑉 ]⋅𝑠 ⊲ 〈builtin 𝑏 𝑉 (𝜄⋅𝜂)〉 ↦ 𝑠 ⊲ 〈builtin 𝑏 (𝑉 ⋅𝑉 ) 𝜂〉 if 𝜄 ∈ U# ∪ V∗

[〈builtin 𝑏 𝑉 [𝜄]〉 _]⋅𝑠 ⊲ 𝑉 ↦ 𝖤𝗏𝖺𝗅𝖢𝖤𝖪 (𝑠, 𝑏, 𝑉 ⋅𝑉 ) if 𝜄 ∈ U# ∪ V∗

[_ 𝑉 ]⋅𝑠 ⊲ 〈builtin 𝑏 𝑉 [𝜄]〉 ↦ 𝖤𝗏𝖺𝗅𝖢𝖤𝖪 (𝑠, 𝑏, 𝑉 ⋅𝑉 ) if 𝜄 ∈ U# ∪ V∗

(force _)⋅𝑠 ⊲ 〈delay𝑀 𝜌〉 ↦ 𝑠; 𝜌 ⊳𝑀

(force _)⋅𝑠 ⊲ 〈builtin 𝑏 𝑉 (𝜄⋅𝜂)〉 ↦ 𝑠 ⊲ 〈builtin 𝑏 𝑉 𝜂〉 if 𝜄 ∈ Q

(force _)⋅𝑠 ⊲ 〈builtin 𝑏 𝑉 [𝜄]〉 ↦ 𝖤𝗏𝖺𝗅𝖢𝖤𝖪 (𝑠, 𝑏, 𝑉 ) if 𝜄 ∈ Q

(constr 𝑖 𝑉 _ (𝑀 ⋅𝑀,𝜌))⋅𝑠 ⊲ 𝑉 ↦ (constr 𝑖 𝑉 ⋅𝑉 _ (𝑀,𝜌))⋅𝑠; 𝜌 ⊳𝑀

(constr 𝑖 𝑉 _ ([], 𝜌))⋅𝑠 ⊲ 𝑉 ↦ 𝑠 ⊲ 〈constr 𝑖 𝑉 ⋅𝑉 〉
(case _ (𝑀0…𝑀𝑛, 𝜌))⋅𝑠 ⊲ 〈constr 𝑖 𝑉0…𝑉𝑚〉 ↦ [_ 𝑉𝑚]⋅⋯⋅[_ 𝑉0]⋅𝑠; 𝜌 ⊳𝑀𝑖 if 0 ≤ 𝑖 ≤ 𝑛

(a) CEK machine transitions for Plutus Core

𝖤𝗏𝖺𝗅𝖢𝖤𝖪(𝑠, 𝑏, [𝑉1,… , 𝑉𝑛]) =

{

⬥ if 𝖤𝗏𝖺𝗅 (𝑏, [𝑉1,… , 𝑉𝑛]) = ×
𝑠 ⊲ 𝖤𝗏𝖺𝗅 (𝑏, [𝑉1,… , 𝑉𝑛]) otherwise

(b) Evaluation of built-in functions
Figure 2.10: A CEK machine for Plutus Core
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2.4.1 Converting CEK evaluation results into Plutus Core terms
The purpose of the CEK machine is to evaluate Plutus Core terms, but in the definition in Figure 2.10 it
does not return a Plutus Core term; instead the machine can halt in two different ways:

• The machine can halt in the state ◻𝑉 for some CEK value 𝑉 .
• The machine can halt in the state ⬥ .

To get a complete evaluation strategy for Plutus Core we must convert these states into Plutus Core terms.
The term corresponding to ⬥ is (error), and to obtain a term from ◻𝑉 we perform a process which
we refer to as discharging the CEK value 𝑉 (also known as unloading: see [38, pp. 129–130], [28, pp.
71ff]). This process substitutes bindings in environments for variables occurring in the value 𝑉 to obtain
a term U(𝑉 ): see Figure 2.11a. Since environments contain bindings 𝑥 ↦ 𝑊 of variables to further
CEK values, we have to recursively discharge those bindings first before substituting: see Figure 2.11b,
which defines an operation @𝜌 which does this. As before [𝑁∕𝑥]𝑀 denotes the usual (capture-avoiding)
process of substituting the term𝑁 for all unbound occurrences of the variable 𝑥 in the term𝑀 . Note that
in Figure 2.11b we substitute the rightmost (ie, the most recent) bindings in the environment first.

U(〈con T 𝑐〉) = (con T 𝑐)
U(〈delay𝑀 𝜌〉) = (delay𝑀)@𝜌
U(〈lam 𝑥 𝑀 𝜌〉) = (lam 𝑥 𝑀)@𝜌

U(〈constr 𝑖 𝑉 〉) = (constr 𝑖 U(𝑉 ))
U(〈builtin 𝑏 𝑉1𝑉2…𝑉𝑘 𝜂〉) = [… [[(builtin 𝑏) (U(𝑉1))] (U(𝑉2))]…(U(𝑉𝑘))]

(a) Discharging CEK values

𝑀@𝜌 = [(U(𝑉1))∕𝑥1]⋯ [(U(𝑉𝑛))∕𝑥𝑛]𝑀 if 𝜌 = [𝑥1 ↦ 𝑉1,… , 𝑥𝑛 ↦ 𝑉𝑛]

(b) Iterated substitution/discharging
Figure 2.11: Discharging CEK values to obtain Plutus Core terms

We can prove that if we evaluate a closed Plutus Core term in the CEK machine and then convert the
result back to a term using the above procedure then we get the result that we should get according to the
semantics in Figure 2.7.

2.5 Cost accounting for Untyped Plutus Core
To follow.

23



Chapter 3

Typed Plutus Core

To follow.
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Chapter 4

Plutus Core on Cardano

4.1 Protocol versions
The Cardano blockchain controls the introduction of features through the use of protocol versions, a field
in the protocol parameters. The major protocol version is used to indicate when forwards-incompatible
changes (i.e. those that allow blocks that were not previously allowed) are made to the rules of the chain.
This is a hard fork of the chain.

The protocol version is part of the history of the chain, as are all protocol parameters. That means
that all blocks are associated with the protocol version from when they were created, so that they can be
interpreted correctly.

In summary, conditioning on the protocol version is the main way in which we can introduce changes
in behaviour.

Table 4.1 lists the protocol versions that are relevant to the use of Plutus Core on Cardano.

Protocol version Codename Date
5.0 Alonzo September 2021
7.0 Vasil June 2022
8.0 Valentine February 2023
9.0 Conway September 2024

Table 4.1: Protocol versions

4.2 Ledger languages
The Cardano ledger uses Plutus Core as the programming language for scripts. The ledger in fact supports
multiple different interpretations for scripts, and so each script is tagged with a ledger language that tells
the ledger how to interpret it. Since the ledger must always be able to evaluate old scripts and get the same
answer, the ledger language must pin down everything about how the script is evaluated, including:

1. How to interpret the script itself (e.g. as a Plutus Core program, what versions of the Plutus Core
language are allowable)

2. Other configuration the script may need in order to run (e.g. the set of builtin types and functions
and their interpretations, cost model parameters)
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3. How the script is invoked (e.g. after having certain arguments passed to it)
There are currently three “Plutus” ledger languages (i.e. ledger languages whose underlying program-

ming language is Plutus Core) in use on Cardano:∗
1. PlutusV1

2. PlutusV2

3. PlutusV3

Table 4.2 shows when each Plutus ledger language was introduced. Ledger languages remain available
permanently after they have been introduced.

Protocol version Ledger language introduced
5.0 PlutusV1
7.0 PlutusV2
9.0 PlutusV3

Table 4.2: Introduction of Plutus ledger languages

Ledger languages can evolve over time. We can make backwards-compatible changes when the major
protocol version changes, but backwards-incompatible changes can only be introduced by creating a whole
new ledger language.† This means that to fully explain the behaviour of a ledger language we may need
to also index by the protocol version.

The following tables show how Plutus ledger languages determine:
• Which Plutus Core language versions are allowable (Table 4.3)
• Which built-in functions and types are available (Table 4.4, given in terms of batches, see Sec-

tion 4.3)
• How to interpret the built-in functions and types (Table 4.5, given in terms of built-in semantics

variants, see Section 4.3)
Currently, once we add a feature for any given protocol version/ledger language, we also make it

available for all subsequent protocol versions/ledger languages. For example, Batch 2 of builtins was
introduced in PlutusV2 at protocol version 7.0, so it is also available in PlutusV2 at protocol versions
after 7.0, and PlutusV3 at protocol versions after 9.0 (when PlutusV3 itself was first introduced). Hence
the tables are simplified to only show when something is introduced.

Ledger language Protocol version Plutus Core language version introduced
PlutusV1 5.0 1.0.0
PlutusV3 9.0 1.1.0

Table 4.3: Introduction of Plutus Core language versions
∗Note that ledger languages are completely distinct from the point of view of the ledger, the “V1”/“V2” naming is suggestive of

the fact that these two ledger languages are related, but in the implementation they are completely independent.
†See [1] for more details on how the process of evolution works.
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Ledger language Protocol version Built-in functions and types introduced
PlutusV1 5.0 Batch 1
PlutusV2 7.0 Batch 2
PlutusV2 8.0 Batch 3
PlutusV3 9.0 Batch 4
PlutusV3 10.0 Batch 5

Table 4.4: Introduction of built-in functions and types

Ledger language Built-in semantics variant used
PlutusV1 Built-in semantics 1
PlutusV3 Built-in semantics 2

Table 4.5: Selection of built-in semantics variant

4.3 Built-in types and functions
Built-in batches. The built-in types and functions are defined in batches corresponding to how they
were added to ledger languages. These batches are given in the following sections.

Built-in semantics variants. In rare cases we can make a mistake or need to change the actual behaviour
of a built-in function. To handle this we define a series of built-in semantics variants, which indicate which
behaviour should be used. A fix will typically be deployed by defining a new semantics variant, and then
using that variant for future ledger languages (but not existing ones, since this is usually a backwards-
incompatible change).

Changes are listed alongside the original definition of the built-in function in its original batch, and
are indexed in the following table.

Built-in semantics variant Changes from previous semantics
Built-in semantics 1 None
Built-in semantics 2 consByteString (See 2)

Table 4.6: Built-in semantics variants

Concrete syntax for built-in types. Recall that in the abstract notation for built-in types introduced
in Section 2.2.1, a built-in type is either an atomic type such as integer or string or an application
op(𝑇1,… , 𝑇𝑛) of a type operator to a sequence of built-in types. The concrete syntax of built-in types
used in textual Plutus Core programs is slightly different in that we use a curried form of application for
type operators: a type is given by

𝐓 ∶∶= atomic-type Atomic type
(op 𝐓1…𝐓

|op|) Type application
Note that we again require that all type operators are fully applied. We refer to the syntactic objects 𝐓
above as concrete built-in types. There is an obvious bijection between these and the abstract built-in types
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used elsewhere in this document, and given an abstract built-in type 𝑇 we will denote the corresponding
concrete built-in type by �̄� .

Concrete syntax for built-in constants. We provide concrete syntax for constants of most (but not all)
built-in types. For a built-in type 𝑇 which has a concrete syntax we specify a set 𝐂𝑇 of strings (using
either regular expressions or a BNF-style grammar), and a constant of type 𝑇 is then represented in the
concrete syntax by an expression of the form (con �̄� 𝑐𝑇 ) with 𝑐𝑇 ∈ 𝐂𝑇 . Each string 𝑐𝑇 will have an
interpretation as a value of type 𝑇 (ie, an element of J𝑇 K) and since this will generally be the obvious
interpretation we will not always spell out the details.

4.3.1 Batch 1
4.3.1.1 Built-in types and type operators
The first batch of built-in types and type operators is defined in Tables 4.7 and 4.8. We also include
concrete syntax for these; the concrete syntax is not strictly part of the language, but may be useful for
tools working with Plutus Core.

Type Denotation Concrete Syntax
integer ℤ -?[0-9]+
bytestring 𝔹∗, the set of sequences of bytes or 8-bit

characters.
#([0-9A-Fa-f][0-9A-Fa-f])*

string 𝕌∗, the set of sequences of Unicode char-
acters.

See note below
bool {𝗍𝗋𝗎𝖾, 𝖿𝖺𝗅𝗌𝖾} True | False
unit {()} ()
data See below See below

Table 4.7: Atomic types, batch 1

Operator op |op| Denotation Concrete Syntax
list 1 J𝚕𝚒𝚜𝚝 (𝑡)K = J𝑡K∗ See below
pair 2 J𝚙𝚊𝚒𝚛 (𝑡1, 𝑡2)K = J𝑡1K × J𝑡2K See below

Table 4.8: Type operators, batch 1

Concrete syntax for strings. Strings are represented as sequences of Unicode characters enclosed in
double quotes, and may include standard escape sequences. Surrogate characters in the range U+D800–
U+DFFF are replaced with the Unicode replacement character U+FFFD.

Concrete syntax for lists and pairs. A list of type list(𝑡) is written as a syntactic list [𝑐1,… , 𝑐𝑛]where each 𝑐𝑖 lies in 𝐂𝑡; a pair of type pair(𝑡1, 𝑡2) is written as a syntactic pair (𝑐1, 𝑐2) with 𝑐1 ∈ 𝐂𝑡1 and
𝑐2 ∈ 𝐂𝑡2 . Some valid constant expressions are thus

(con (list integer) [11, 22, 33])
(con (pair bool string) (True, "Plutus")).
(con (list (pair bool (list bytestring)))

[(True, []), (False, [#,#1F]), (True, [#123456, #AB, #ef2804])])
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The 𝚍𝚊𝚝𝚊 type. We provide a built-in type 𝚍𝚊𝚝𝚊 which permits the encoding of simple data structures
for use as arguments to Plutus Core scripts. This type is defined in Haskell as

data Data =
Constr Integer [Data]
| Map [(Data, Data)]
| List [Data]
| I Integer
| B ByteString

In set-theoretic terms the denotation of 𝚍𝚊𝚝𝚊 is defined to be the least fixed point of the endofunctor 𝐹 on
the category of sets given by 𝐹 (𝑋) = (J𝚒𝚗𝚝𝚎𝚐𝚎𝚛K×𝑋∗)⊎ (𝑋 ×𝑋)∗ ⊎𝑋∗ ⊎ J𝚒𝚗𝚝𝚎𝚐𝚎𝚛K⊎ J𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐K,
so that

J𝚍𝚊𝚝𝚊K = (J𝚒𝚗𝚝𝚎𝚐𝚎𝚛K × J𝚍𝚊𝚝𝚊K∗) ⊎ (J𝚍𝚊𝚝𝚊K × J𝚍𝚊𝚝𝚊K)∗ ⊎ J𝚍𝚊𝚝𝚊K∗ ⊎ J𝚒𝚗𝚝𝚎𝚐𝚎𝚛K ⊎ J𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐K.

We have injections
inj𝐶 ∶ J𝚒𝚗𝚝𝚎𝚐𝚎𝚛K × J𝚍𝚊𝚝𝚊K∗ → J𝚍𝚊𝚝𝚊K

inj𝑀 ∶ J𝚍𝚊𝚝𝚊K × J𝚍𝚊𝚝𝚊K∗ → J𝚍𝚊𝚝𝚊K
inj𝐿 ∶ J𝚍𝚊𝚝𝚊K∗ → J𝚍𝚊𝚝𝚊K

inj𝐼 ∶ J𝚒𝚗𝚝𝚎𝚐𝚎𝚛K → J𝚍𝚊𝚝𝚊K
𝑖𝑛𝑗𝐵 ∶ J𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐K → J𝚍𝚊𝚝𝚊K

and projections
proj𝐶 ∶ J𝚍𝚊𝚝𝚊K → (J𝚒𝚗𝚝𝚎𝚐𝚎𝚛K × J𝚍𝚊𝚝𝚊K∗)×
proj𝑀 ∶ J𝚍𝚊𝚝𝚊K → (J𝚍𝚊𝚝𝚊K × J𝚍𝚊𝚝𝚊K∗)×
proj𝐿 ∶ J𝚍𝚊𝚝𝚊K → J𝚍𝚊𝚝𝚊K∗×
proj𝐼 ∶ J𝚍𝚊𝚝𝚊K → J𝚒𝚗𝚝𝚎𝚐𝚎𝚛K×
proj𝐵 ∶ J𝚍𝚊𝚝𝚊K → J𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐K×

which extract an object of the relevant type from a 𝚍𝚊𝚝𝚊 object 𝐷, returning × if 𝐷 does not lie in the
expected component of the disjoint union; also there are functions

is𝐶 , is𝑀 , is𝐿, is𝐼 , is𝐵 ∶ J𝚍𝚊𝚝𝚊K → J𝚋𝚘𝚘𝚕K

which determine whether a 𝚍𝚊𝚝𝚊 value lies in the relevant component.

Note: Constr tag values. The Constr constructor of the data type is intended to represent values from
algebraic data types (also known as sum types and discriminated unions, among other things; data itself
is an example of such a type), where 𝙲𝚘𝚗𝚜𝚝𝚛 𝑖 [𝑑1,… , 𝑑𝑛] represents a tuple of data items together with a
tag 𝑖 indicating which of a number of alternatives the data belongs to. The definition above allows tags to
be any integer value, but because of restrictions in the serialisation format for data (see Section B.7) we
recommend that in practice only tags 𝑖 with 0 ≤ 𝑖 ≤ 264 − 1 should be used: deserialisation will fail for
data items (and programs which include such items) involving tags outside this range.

Note also that Constr is unrelated to the constr term in Plutus Core itself. Both provide ways of
representing structured data, but the former is part of a built-in type whereas the latter is part of the
language itself.
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Concrete syntax for 𝚍𝚊𝚝𝚊. The concrete syntax for 𝚍𝚊𝚝𝚊 is given by
𝑐𝚍𝚊𝚝𝚊 ∶∶= (Constr 𝑐𝚒𝚗𝚝𝚎𝚐𝚎𝚛 𝑐𝚕𝚒𝚜𝚝(𝚍𝚊𝚝𝚊))

(Map 𝑐𝚕𝚒𝚜𝚝(𝚙𝚊𝚒𝚛(𝚍𝚊𝚝𝚊,𝚍𝚊𝚝𝚊)))
(List 𝑐𝚕𝚒𝚜𝚝(𝚍𝚊𝚝𝚊))
(I 𝑐𝚒𝚗𝚝𝚎𝚐𝚎𝚛)
(B 𝑐𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐).

We interpret these syntactic constants as elements of J𝚍𝚊𝚝𝚊K using the various ‘inj’ functions defined
earlier. Some valid data constants are

(con data (Constr 1 [(I 2), (B #), (Map [])])
(con data (Map [((I 0), (B #00)), ((I 1), (B #0F))]))
(con data (List [(I 0), (I 1), (B #7FFF), (List []])))
(con data (I -22))
(con data (B #001A)).

Note. At the time of writing the syntax accepted by IOG’s parser for textual Plutus Core differs slightly
from that above in that subobjects of Constr, Map and List objects must not be parenthesised: for exam-
ple one must write (con data (Constr 1 [I 2, B #,Map []]). This discrepancy will be resolved
in the near future.

4.3.1.2 Built-in functions
The first batch of built-in functions is shown in Table 4.9. The table indicates which functions can fail
during execution, and conditions causing failure are specified either in the denotation given in the table or
in a relevant note. Recall also that a built-in function will fail if it is given an argument of the wrong type:
this is checked in conditions involving the ∼ relation and the 𝖤𝗏𝖺𝗅 function in Figures 2.7 and 2.10. Note
also that some of the functions are #-polymorphic. According to Section 2.2.2.3 we require a denotation for
every possible monomorphisation of these; however all of these functions are parametrically polymorphic
so to simplify notation we have given a single denotation for each of them with an implicit assumption
that it applies at each possible monomorphisation in an obvious way.

Function Signature Denotation Can Note
fail?

addInteger [𝚒𝚗𝚝𝚎𝚐𝚎𝚛, 𝚒𝚗𝚝𝚎𝚐𝚎𝚛] → 𝚒𝚗𝚝𝚎𝚐𝚎𝚛 + No
subtractInteger [𝚒𝚗𝚝𝚎𝚐𝚎𝚛, 𝚒𝚗𝚝𝚎𝚐𝚎𝚛] → 𝚒𝚗𝚝𝚎𝚐𝚎𝚛 − No
multiplyInteger [𝚒𝚗𝚝𝚎𝚐𝚎𝚛, 𝚒𝚗𝚝𝚎𝚐𝚎𝚛] → 𝚒𝚗𝚝𝚎𝚐𝚎𝚛 × No
divideInteger [𝚒𝚗𝚝𝚎𝚐𝚎𝚛, 𝚒𝚗𝚝𝚎𝚐𝚎𝚛] → 𝚒𝚗𝚝𝚎𝚐𝚎𝚛 div Yes 1
modInteger [𝚒𝚗𝚝𝚎𝚐𝚎𝚛, 𝚒𝚗𝚝𝚎𝚐𝚎𝚛] → 𝚒𝚗𝚝𝚎𝚐𝚎𝚛 mod Yes 1
quotientInteger [𝚒𝚗𝚝𝚎𝚐𝚎𝚛, 𝚒𝚗𝚝𝚎𝚐𝚎𝚛] → 𝚒𝚗𝚝𝚎𝚐𝚎𝚛 quot Yes 1
remainderInteger [𝚒𝚗𝚝𝚎𝚐𝚎𝚛, 𝚒𝚗𝚝𝚎𝚐𝚎𝚛] → 𝚒𝚗𝚝𝚎𝚐𝚎𝚛 rem Yes 1
equalsInteger [𝚒𝚗𝚝𝚎𝚐𝚎𝚛, 𝚒𝚗𝚝𝚎𝚐𝚎𝚛] → 𝚋𝚘𝚘𝚕 = No
lessThanInteger [𝚒𝚗𝚝𝚎𝚐𝚎𝚛, 𝚒𝚗𝚝𝚎𝚐𝚎𝚛] → 𝚋𝚘𝚘𝚕 < No

Table 4.9: Built-in functions, batch 1
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lessThanEqualsInteger [𝚒𝚗𝚝𝚎𝚐𝚎𝚛, 𝚒𝚗𝚝𝚎𝚐𝚎𝚛] → 𝚋𝚘𝚘𝚕 ≤ No
appendByteString [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐, 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐]

→ 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐

([𝑐1,… , 𝑐𝑚], [𝑑1,… , 𝑑𝑛])
↦ [𝑐1,… , 𝑐𝑚, 𝑑1,… , 𝑑𝑛]

No
consByteString (Variant 1) [𝚒𝚗𝚝𝚎𝚐𝚎𝚛, 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐]

→ 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐

(𝑐, [𝑐1,… , 𝑐𝑛])
↦ [mod(𝑐, 256), 𝑐1,… , 𝑐𝑛]

No 2
consByteString (Variant 2) [𝚒𝚗𝚝𝚎𝚐𝚎𝚛, 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐]

→ 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐

(𝑐, [𝑐1,… , 𝑐𝑛])

↦

⎧

⎪

⎨

⎪

⎩

[𝑐, 𝑐1,… , 𝑐𝑛] if 0 ≤ 𝑐 ≤ 255

× otherwise

Yes 2

sliceByteString [𝚒𝚗𝚝𝚎𝚐𝚎𝚛, 𝚒𝚗𝚝𝚎𝚐𝚎𝚛, 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐]
→ 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐

(𝑠, 𝑘, [𝑐0,… , 𝑐𝑛])
↦ [𝑐max(𝑠,0),… , 𝑐min(𝑠+𝑘−1,𝑛−1)]

No 3
lengthOfByteString [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐] → 𝚒𝚗𝚝𝚎𝚐𝚎𝚛 [] ↦ 0, [𝑐1,… , 𝑐𝑛] ↦ 𝑛 No
indexByteString [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐, 𝚒𝚗𝚝𝚎𝚐𝚎𝚛]

→ 𝚒𝚗𝚝𝚎𝚐𝚎𝚛

([𝑐0,… , 𝑐𝑛−1], 𝑗)

↦

⎧

⎪

⎨

⎪

⎩

𝑐𝑖 if 0 ≤ 𝑗 ≤ 𝑛 − 1

× otherwise

Yes

equalsByteString [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐, 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐]
→ 𝚋𝚘𝚘𝚕

= No 4
lessThanByteString [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐, 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐]

→ 𝚋𝚘𝚘𝚕

< No 4
lessThanEqualsByteString [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐, 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐]

→ 𝚋𝚘𝚘𝚕

≤ No 4
appendString [𝚜𝚝𝚛𝚒𝚗𝚐, 𝚜𝚝𝚛𝚒𝚗𝚐] → 𝚜𝚝𝚛𝚒𝚗𝚐 ([𝑢1,… , 𝑢𝑚], [𝑣1,… , 𝑣𝑛])

↦ [𝑢1,… , 𝑢𝑚, 𝑣1,… , 𝑣𝑛]
No

equalsString [𝚜𝚝𝚛𝚒𝚗𝚐, 𝚜𝚝𝚛𝚒𝚗𝚐] → 𝚋𝚘𝚘𝚕 = No
encodeUtf8 [𝚜𝚝𝚛𝚒𝚗𝚐] → 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐 𝗎𝗍𝖿𝟪 5
decodeUtf8 [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐] → 𝚜𝚝𝚛𝚒𝚗𝚐 𝗎𝗍𝖿𝟪−1 Yes 5
sha2_256 [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐] → 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐 Hash a 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐 using

SHA-256 [23].
No

sha3_256 [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐] → 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐 Hash a 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐 using
SHA3-256 [26].

No
blake2b_256 [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐] → 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐 Hash a 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐 using

Blake2b-256 [40].
No

verifyEd25519Signature [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐, 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐,
𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐] → 𝚋𝚘𝚘𝚕

Verify an Ed25519 digital signature. Yes 6, 7
ifThenElse [∀𝑎∗, 𝚋𝚘𝚘𝚕, 𝑎∗, 𝑎∗] → 𝑎∗ (𝗍𝗋𝗎𝖾, 𝑡1, 𝑡2) ↦ 𝑡1 (𝖿𝖺𝗅𝗌𝖾, 𝑡1, 𝑡2) ↦ 𝑡2 No
chooseUnit [∀𝑎∗, 𝚞𝚗𝚒𝚝, 𝑎∗] → 𝑎∗ ((), 𝑡) ↦ 𝑡 No
trace [∀𝑎∗, 𝚜𝚝𝚛𝚒𝚗𝚐, 𝑎∗] → 𝑎∗ (𝑠, 𝑡) ↦ 𝑡 No 8
fstPair [∀𝑎#,∀𝑏#, 𝚙𝚊𝚒𝚛 (𝑎#, 𝑏#)] → 𝑎# (𝑥, 𝑦) ↦ 𝑥 No
sndPair [∀𝑎#,∀𝑏#, 𝚙𝚊𝚒𝚛 (𝑎#, 𝑏#)] → 𝑏# (𝑥, 𝑦) ↦ 𝑦 No

Table 4.9: Built-in functions, batch 1
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fail?

chooseList [∀𝑎#,∀𝑏∗, 𝚕𝚒𝚜𝚝 (𝑎#), 𝑏∗, 𝑏∗] → 𝑏∗ ([], 𝑡1, 𝑡2) ↦ 𝑡1,
([𝑥1,… , 𝑥𝑛], 𝑡1, 𝑡2) ↦ 𝑡2 (𝑛 ≥ 1).

No
mkCons [∀𝑎#, 𝑎#, 𝚕𝚒𝚜𝚝 (𝑎#)] → 𝚕𝚒𝚜𝚝 (𝑎#) (𝑥, [𝑥1,… , 𝑥𝑛]) ↦ [𝑥, 𝑥1,… , 𝑥𝑛] No
headList [∀𝑎#, 𝚕𝚒𝚜𝚝 (𝑎#)] → 𝑎# [] ↦ ×, [𝑥1, 𝑥2,… , 𝑥𝑛] ↦ 𝑥1 Yes
tailList [∀𝑎#, 𝚕𝚒𝚜𝚝 (𝑎#)] → 𝚕𝚒𝚜𝚝 (𝑎#) [] ↦ ×, [𝑥1, 𝑥2,… , 𝑥𝑛] ↦ [𝑥2,… , 𝑥𝑛] Yes
nullList [∀𝑎#, 𝚕𝚒𝚜𝚝 (𝑎#)] → 𝚋𝚘𝚘𝚕 [] ↦ 𝗍𝗋𝗎𝖾, [𝑥1,… , 𝑥𝑛] ↦ 𝖿𝖺𝗅𝗌𝖾 No
chooseData [∀𝑎∗, 𝚍𝚊𝚝𝚊, 𝑎∗, 𝑎∗, 𝑎∗, 𝑎∗, 𝑎∗] → 𝑎∗ (𝑑, 𝑡𝐶 , 𝑡𝑀 , 𝑡𝐿, 𝑡𝐼 , 𝑡𝐵)

↦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑡𝐶 if is𝐶 (𝑑)
𝑡𝑀 if is𝑀 (𝑑)
𝑡𝐿 if is𝐿(𝑑)
𝑡𝐼 if is𝐼 (𝑑)
𝑡𝐵 if is𝐵(𝑑)

No

constrData [𝚒𝚗𝚝𝚎𝚐𝚎𝚛, 𝚕𝚒𝚜𝚝 (𝚍𝚊𝚝𝚊)] → 𝚍𝚊𝚝𝚊 inj𝐶 No
mapData [𝚕𝚒𝚜𝚝 (𝚙𝚊𝚒𝚛 (𝚍𝚊𝚝𝚊, 𝚍𝚊𝚝𝚊))

→ 𝚍𝚊𝚝𝚊

inj𝑀 No
listData [𝚕𝚒𝚜𝚝 (𝚍𝚊𝚝𝚊)] → 𝚍𝚊𝚝𝚊 inj𝐿 No
iData [𝚒𝚗𝚝𝚎𝚐𝚎𝚛] → 𝚍𝚊𝚝𝚊 inj𝐼 No
bData [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐] → 𝚍𝚊𝚝𝚊 inj𝐵 No
unConstrData [𝚍𝚊𝚝𝚊]

→ 𝚙𝚊𝚒𝚛 (𝚒𝚗𝚝𝚎𝚐𝚎𝚛, 𝚕𝚒𝚜𝚝 (𝚍𝚊𝚝𝚊))
proj𝐶 Yes

unMapData [𝚍𝚊𝚝𝚊]
→ 𝚕𝚒𝚜𝚝 (𝚙𝚊𝚒𝚛 (𝚍𝚊𝚝𝚊, 𝚍𝚊𝚝𝚊))

proj𝑀 Yes
unListData [𝚍𝚊𝚝𝚊] → 𝚕𝚒𝚜𝚝 (𝚍𝚊𝚝𝚊) proj𝐿 Yes
unIData [𝚍𝚊𝚝𝚊] → 𝚒𝚗𝚝𝚎𝚐𝚎𝚛 proj𝐼 Yes
unBData [𝚍𝚊𝚝𝚊] → 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐 proj𝐵 Yes
equalsData [𝚍𝚊𝚝𝚊, 𝚍𝚊𝚝𝚊] → 𝚋𝚘𝚘𝚕 =

mkPairData [𝚍𝚊𝚝𝚊, 𝚍𝚊𝚝𝚊]
→ 𝚙𝚊𝚒𝚛 (𝚍𝚊𝚝𝚊, 𝚍𝚊𝚝𝚊)

(𝑥, 𝑦) ↦ (𝑥, 𝑦) No
mkNilData [𝚞𝚗𝚒𝚝] → 𝚕𝚒𝚜𝚝 (𝚍𝚊𝚝𝚊) () ↦ [] No
mkNilPairData [𝚞𝚗𝚒𝚝]

→ 𝚕𝚒𝚜𝚝 (𝚙𝚊𝚒𝚛 (𝚍𝚊𝚝𝚊, 𝚍𝚊𝚝𝚊))
() ↦ [] No

Table 4.9: Built-in functions, batch 1 (continued)

Note 1. Integer division functions. We provide four integer division functions: divideInteger,
modInteger, quotientInteger, and remainderInteger, whose denotations are mathematical func-
tions div,mod, quot, and rem which are modelled on the corresponding Haskell operations. Each of these
takes two arguments and will fail (returning ×) if the second one is zero. For all 𝑎, 𝑏 ∈ ℤ with 𝑏 ≠ 0 we
have

div(𝑎, 𝑏) × 𝑏 + mod(𝑎, 𝑏) = 𝑎
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|mod(𝑎, 𝑏)| < |𝑏|

and
quot(𝑎, 𝑏) × 𝑏 + rem(𝑎, 𝑏) = 𝑎

| rem(𝑎, 𝑏)| < |𝑏|.

The div and mod functions form a pair, as do quot and rem; div should not be used in combination with
mod, not should quot be used with mod.

For positive divisors 𝑏, div truncates downwards and mod always returns a non-negative result (0 ≤
mod(𝑎, 𝑏) ≤ 𝑏 − 1). The quot function truncates towards zero. Table 4.10 shows how the signs of the
outputs of the division functions depend on the signs of the inputs; + means ≥ 0 and − means ≤ 0, but
recall that for 𝑏 = 0 all of these functions return the error value ×.

a b div mod quot rem
+ + + + + +
− + − + − −
+ − − + + +
− − + − + −

Table 4.10: Behaviour of integer division functions

Note 2. The consByteString function. In built-in semantics 1, the first argument of consByteString
is an arbitrary integer which will be reduced modulo 256 before being prepended to the second argument.
In built-in semantics 2 we require that the first argument lies between 0 and 255 (inclusive): in any other
case an error will occur.
Note 3. The sliceByteString function. The application [[(builtin sliceByteString) (con
integer 𝑠)] (con integer 𝑘)] (con bytestring 𝑏)] returns the substring of 𝑏 of length 𝑘 start-
ing at position 𝑠; indexing is zero-based, so a call with 𝑠 = 0 returns a substring starting with the first
element of 𝑏, 𝑠 = 1 returns a substring starting with the second, and so on. This function always succeeds,
even if the arguments are out of range: if 𝑏 = [𝑐0,… , 𝑐𝑛−1] then the application above returns the substring
[𝑐𝑖,… , 𝑐𝑗] where 𝑖 = max(𝑠, 0) and 𝑗 = min(𝑠 + 𝑘 − 1, 𝑛 − 1); if 𝑗 < 𝑖 then the empty string is returned.
Note 4. Comparisons of bytestrings. Bytestrings are ordered lexicographically in the usual way. If we
have 𝑎 = [𝑎1,… , 𝑎𝑚] and 𝑏 = [𝑏1,… , 𝑏𝑛] then (recalling that if 𝑚 = 0 then 𝑎 = [], and similarly for 𝑏),

• 𝑎 = 𝑏 if and only if 𝑚 = 𝑛 and 𝑎𝑖 = 𝑏𝑖 for 1 ≤ 𝑖 ≤ 𝑚.
• 𝑎 ≤ 𝑏 if and only if one of the following holds:

– 𝑎 = []
– 𝑚, 𝑛 > 0 and 𝑎1 < 𝑏1
– 𝑚, 𝑛 > 0 and 𝑎1 = 𝑏1 and [𝑎2,… , 𝑎𝑚] ≤ [𝑏2,… , 𝑏𝑛].

• 𝑎 < 𝑏 if and only if 𝑎 ≤ 𝑏 and 𝑎 ≠ 𝑏.
For example, #𝟸𝟹𝟺𝟻𝟼𝟽𝟾𝟿 < #𝟸𝟺 and #𝟸𝟹𝟺𝟻 < #𝟸𝟹𝟺𝟻𝟶𝟶. The empty bytestring is equal only to itself and
is strictly less than all other bytestrings.
Note 5. Encoding and decoding bytestrings. The encodeUtf8 and decodeUtf8 functions convert
between the 𝚜𝚝𝚛𝚒𝚗𝚐 type and the 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐 type. We have defined J𝚜𝚝𝚛𝚒𝚗𝚐K to consist of sequences
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of Unicode characters without specifying any particular character representation, whereas J𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐K
consists of sequences of 8-bit bytes. We define the denotation of encodeUtf8 to be the function

𝗎𝗍𝖿𝟪 ∶ 𝕌∗ → 𝔹∗

which converts sequences of Unicode characters to sequences of bytes using the well-known UTF-8 char-
acter encoding [44, Definition D92]. The denotation of decodeUtf8 is the partial inverse function

𝗎𝗍𝖿𝟪−1 ∶ 𝔹∗ → 𝕌∗
×.

UTF-8 encodes Unicode characters encoded using between one and four bytes: thus in general neither
function will preserve the length of an object. Moreover, not all sequences of bytes are valid represen-
tations of Unicode characters, and decodeUtf8 will fail if it receives an invalid input (but encodeUtf8
will always succeed).

Note 6. Digital signature verification functions. We use a uniform interface for digital signature
verification algorithms. A digital signature verification function takes three bytestring arguments (in the
given order):

• a public key vk (in this context vk is also known as a verification key)
• a message 𝑚
• a signature 𝑠.

A signature verification function may require one or more arguments to be well-formed in some sense
(in particular an argument may need to be of a specified length), and in this case the function will fail
(returning ×) if any argument is malformed. If all of the arguments are well-formed then the verification
function returns 𝗍𝗋𝗎𝖾 if the private key corresponding to vk was used to sign the message 𝑚 to produce 𝑠,
otherwise it returns 𝖿𝖺𝗅𝗌𝖾.
Note 7. Ed25519 signature verification. The verifyEd25519Signature function performs crypto-
graphic signature verification using the Ed25519 scheme [13, 34], and conforms to the interface described
in Note 6. The arguments must have the following sizes:

• vk: 32 bytes
• 𝑚: unrestricted
• 𝑠: 64 bytes.

Note 8. The trace function. An application [(builtin trace) 𝑠 𝑣] (𝑠 a string, 𝑣 any Plutus Core
value) returns 𝑣. We do not specify the semantics any further. An implementation may choose to discard
𝑠 or to perform some side-effect such as writing it to a terminal or log file.
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4.3.2 Batch 2
4.3.2.1 Built-in functions
The second batch of built-in functions is defined in Table 4.11. See [2].

Function Signature Denotation Can Note
fail?

serialiseData [𝚍𝚊𝚝𝚊] → 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐 E𝚍𝚊𝚝𝚊 No 1
Table 4.11: Built-in functions, batch 2

Note 1. Serialising 𝚍𝚊𝚝𝚊 objects. The serialiseData function takes a 𝚍𝚊𝚝𝚊 object and converts it
into a bytestring using a CBOR encoding. A full specification of the encoding (including the definition of
E𝚍𝚊𝚝𝚊) is provided in Appendix B.

4.3.3 Batch 3
4.3.3.1 Built-in functions
The third batch of built-in functions is defined in Table 4.12. See [3].

Function Signature Denotation Can Note
fail?

verifyEcdsaSecp256k1Signature [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐, 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐,
𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐] → 𝚋𝚘𝚘𝚕

Verify an SECP-256k1
ECDSA signature

Yes 1
verifySchnorrSecp256k1Signature [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐, 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐,

𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐] → 𝚋𝚘𝚘𝚕

Verify an SECP-256k1
Schnorr signature

Yes 2

Table 4.12: Built-in functions, batch 3

Note 1. Secp256k1 ECDSA Signature verification. The verifyEcdsaSecp256k1Signature func-
tion performs elliptic curve digital signature verification [9, 10, 33] over the secp256k1 curve [20, §2.4.1]
and conforms to the interface described in Note 6 of Section 4.3.1.2. The arguments must have the fol-
lowing sizes:

• vk: 33 bytes
• 𝑚: 32 bytes
• 𝑠: 64 bytes.

The public key vk is expected to be in the 33-byte compressed form described in [15]. Moreover, the
ECDSA scheme admits two distinct valid signatures for a given message and private key, and we follow the
restriction imposed by Bitcoin (see [36], LOW_S) and only accept the smaller signature; verifyEcdsa-
Secp256k1Signature will return 𝖿𝖺𝗅𝗌𝖾 if the larger one is supplied.
Note 2. Secp256k1 Schnorr Signature verification. The verifySchnorrSecp256k1Signature
function performs verification of Schnorr signatures [42, 35] over the secp256k1 curve and conforms
to the interface described in Note 6 of Section 4.3.1.2. The arguments are expected to be of the forms
specified in BIP-340 [35] and thus should have the following sizes:
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• vk: 32 bytes
• 𝑚: unrestricted
• 𝑠: 64 bytes.

4.3.4 Batch 4
The fourth batch of built-in types and functions adds support for

• The Blake2b-224 and Keccak-256 hash functions (see [4]).
• Conversion functions from integers to bytestrings and vice-versa (see [6]).
• BLS12-381 elliptic curve pairing operations (see [5], [19], [41, 4.2.1], [37]). For clarity these are

described separately in Sections 4.3.4.2 and 4.3.4.3.

4.3.4.1 Miscellaneous built-in functions

Function Signature Denotation Can Note
fail?

blake2b_224 [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐] → 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐 Hash a 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐 using Blake2b-224 [40] No
keccak_256 [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐] → 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐 Hash a 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐 using Keccak-256 [14] No
integerToByteString [𝚋𝚘𝚘𝚕, 𝚒𝚗𝚝𝚎𝚐𝚎𝚛, 𝚒𝚗𝚝𝚎𝚐𝚎𝚛]

→ 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐

(𝑒,𝑤, 𝑛) ↦

{

𝗂𝗍𝗈𝖻𝗌𝖫𝖤(𝑤, 𝑛) if 𝑒 = 𝖿𝖺𝗅𝗌𝖾

𝗂𝗍𝗈𝖻𝗌𝖡𝖤(𝑤, 𝑛) if 𝑒 = 𝗍𝗋𝗎𝖾
Yes 1

byteStringToInteger [𝚋𝚘𝚘𝚕, 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐]
→ 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐

(𝑒, [𝑐0,… , 𝑐𝑁−1])

↦

{

∑𝑁−1
𝑖=0 𝑐𝑖256𝑖 if 𝑒 = 𝖿𝖺𝗅𝗌𝖾

∑𝑁−1
𝑖=0 𝑐𝑖256𝑁−1−𝑖 if 𝑒 = 𝗍𝗋𝗎𝖾

No 2

Table 4.13: Batch 4: miscellaneous built-in functions

Note 1. Integer to bytestring conversion. The integerToByteString function converts non-negative
integers to bytestrings. It takes three arguments:

• A boolean endianness flag 𝑒.
• An integer width argument 𝑤 with 0 ≤ 𝑤 < 8192.
• The integer 𝑛 to be converted: it is required that 0 ≤ 𝑛 < 2568192 = 265536.

The conversion is little-endian (𝖫𝖤) if 𝑒 is (con bool False) and big-endian (𝖡𝖤) if 𝑒 is (con bool
True). If the width𝑤 is zero then the output is a bytestring which is just large enough to hold the converted
integer. If𝑤 > 0 then the output is exactly𝑤 bytes long, and it is an error if 𝑛 does not fit into a bytestring
of that size; if necessary, the output is padded with 0x00 bytes (on the right in the little-endian case and
the left in the big-endian case) to make it the correct length. For example, the five-byte little-endian
representation of the integer 0x123456 is the bytestring [0x56, 0x34, 0x12, 0x00, 0x00] and the
five-byte big-endian representation is [0x00, 0x00, 0x12, 0x34, 0x56]. In all cases an error occurs
error if 𝑤 or 𝑛 lies outside the expected range, and in particular if 𝑛 is negative.
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The precise semantics of integerToByteString are given by the functions 𝗂𝗍𝗈𝖻𝗌𝖫𝖤 ∶ ℤ ×ℤ → 𝔹∗
× and

𝗂𝗍𝗈𝖻𝗌𝖡𝖤 ∶ ℤ × ℤ → 𝔹∗
×. Firstly we deal with out-of-range cases and the case 𝑛 = 0:

𝗂𝗍𝗈𝖻𝗌𝖫𝖤(𝑤, 𝑛) = 𝗂𝗍𝗈𝖻𝗌𝖡𝖤(𝑤, 𝑛) =

⎧

⎪

⎨

⎪

⎩

× if 𝑛 < 0 or 𝑛 ≥ 265536

× if 𝑤 < 0 or 𝑤 > 8192
[] if 𝑛 = 0 and 0 ≤ 𝑤 ≤ 8192

Now assume that none of the conditions above hold, so 0 < 𝑛 < 265536 and 0 ≤ 𝑤 ≤ 8192. Since 𝑛 > 0
it has a unique base-256 expansion of the form 𝑛 =

∑𝑁−1
𝑖=0 𝑎𝑖256𝑖 with 𝑁 ≥ 1, 𝑎𝑖 ∈ 𝔹 for 0 ≤ 𝑖 ≤ 𝑁 − 1

and 𝑎𝑁−1 ≠ 0. We then have

𝗂𝗍𝗈𝖻𝗌𝖫𝖤(𝑤, 𝑛) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[𝑎0,… , 𝑎𝑁−1] if 𝑤 = 0

[𝑏0,… , 𝑏𝑤−1] if 𝑤 > 0 and 𝑁 ≤ 𝑤, where 𝑏𝑖 =
{

𝑎𝑖 if 𝑖 ≤ 𝑁 − 1
0 if 𝑖 ≥ 𝑁

× if 𝑤 > 0 and 𝑁 > 𝑤

and

𝗂𝗍𝗈𝖻𝗌𝖡𝖤(𝑤, 𝑛) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[𝑎𝑁−1,… , 𝑎0] if 𝑤 = 0

[𝑏0,… , 𝑏𝑤−1] if 𝑤 > 0 and 𝑁 ≤ 𝑤, where 𝑏𝑖 =
{

0 if 𝑖 ≤ 𝑤 − 1 −𝑁
𝑎𝑤−1−𝑖 if 𝑖 ≥ 𝑤 −𝑁

× if 𝑤 > 0 and 𝑁 > 𝑤.

Note 2. Bytestring to integer conversion. The byteStringToInteger function converts bytestrings
to non-negative integers. It takes two arguments:

• A boolean endianness flag 𝑒.
• The bytestring 𝑠 to be converted.

The conversion is little-endian if 𝑒 is (con bool False) and big-endian if 𝑒 is (con bool True). In
both cases the empty bytestring is converted to the integer 0. All bytestrings are legal inputs and there is
no limitation on the size of 𝑠.

4.3.4.2 BLS12-381 built-in types
Supporting the BLS12-381 operations involves adding three new types and seventeen new built-in func-
tions. The description of the semantics of these types and functions is quite complex and requires a
considerable amount of notation, most of which is used only in Sections 4.3.4.2 and 4.3.4.3.
Table 4.14 describes three new built-in types.

Type Denotation Concrete Syntax
𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟷_𝚎𝚕𝚎𝚖𝚎𝚗𝚝 𝐺1 0x[0-9A-Fa-f]{96} (see Note 6)
𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟸_𝚎𝚕𝚎𝚖𝚎𝚗𝚝 𝐺2 0x[0-9A-Fa-f]{192} (see Note 6)
𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝚖𝚕𝚛𝚎𝚜𝚞𝚕𝚝 𝐻 None (see Note 6)

Table 4.14: Atomic types, batch 4
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Here 𝐺1 and 𝐺2 are both additive cyclic groups of prime order 𝑟, where
𝑟 = 𝟶𝚡𝟽𝟹𝚎𝚍𝚊𝟽𝟻𝟹𝟸𝟿𝟿𝚍𝟽𝚍𝟺𝟾𝟹𝟹𝟹𝟿𝚍𝟾𝟶𝟾𝟶𝟿𝚊𝟷𝚍𝟾𝟶𝟻𝟻𝟹𝚋𝚍𝚊𝟺𝟶𝟸𝚏𝚏𝚏𝚎𝟻𝚋𝚏𝚎𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝟶𝟶𝟶𝟶𝟶𝟶𝟶𝟷.

The fields 𝔽𝑞 and 𝔽𝑞2 . To define the groups 𝐺1 and 𝐺2 we need the finite field 𝔽𝑞 where
𝑞 = 𝟶𝚡𝟷𝚊𝟶𝟷𝟷𝟷𝚎𝚊𝟹𝟿𝟽𝚏𝚎𝟼𝟿𝚊𝟺𝚋𝟷𝚋𝚊𝟽𝚋𝟼𝟺𝟹𝟺𝚋𝚊𝚌𝚍𝟽𝟼𝟺𝟽𝟽𝟺𝚋𝟾𝟺𝚏𝟹𝟾𝟻𝟷𝟸𝚋𝚏

𝟼𝟽𝟹𝟶𝚍𝟸𝚊𝟶𝚏𝟼𝚋𝟶𝚏𝟼𝟸𝟺𝟷𝚎𝚊𝚋𝚏𝚏𝚏𝚎𝚋𝟷𝟻𝟹𝚏𝚏𝚏𝚏𝚋𝟿𝚏𝚎𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚏𝚊𝚊𝚊𝚋

which is a 381-bit prime. The field 𝔽𝑞 is isomorphic to ℤ𝑞 , the ring of integers modulo 𝑞, and hence there
is a natural epimorphism from ℤ to 𝔽𝑞 which we denote by 𝑛 ↦ �̄�. Given 𝑥 ∈ 𝔽𝑞 , we denote by �̃� the
smallest non-negative integer 𝑛 with �̄� = 𝑥. We sometimes use literal integers to represent elements of 𝔽𝑞in the obvious way.

We also make use of the field 𝔽𝑞2 = 𝔽𝑞[𝑋]∕(𝑋2+1); we may regard 𝔽𝑞2 as the set {𝑎+𝑏𝑢 ∶ 𝑎, 𝑏 ∈ 𝔽𝑞}
where 𝑢2 = −1.

It is convenient to say that an element 𝑎 of 𝔽𝑞 is larger than another element 𝑏 (and 𝑏 is smaller than
𝑎) if �̃� > �̃� in ℤ. We extend this terminology to 𝔽𝑞2 by saying that 𝑎 + 𝑏𝑢 is larger than 𝑐 + 𝑑𝑢 if either 𝑏
is larger than 𝑑 or 𝑏 = 𝑑 and 𝑎 is larger than 𝑐.

The groups 𝐺1 and 𝐺2. There are elliptic curves 𝐸1 defined over 𝔽𝑞:
𝐸1 ∶ 𝑌 2 = 𝑋3 + 4

and 𝐸2 defined over 𝔽𝑞2 :
𝐸2 ∶ 𝑌 2 = 𝑋3 + 4(𝑢 + 1).

𝐸1(𝔽𝑞) and 𝐸2(𝔽𝑞2 ) are abelian groups under the usual elliptic curve addition operations as described
in [43, III.2] or [21, 2.1]. 𝐺1 is a subgroup of 𝐸1(𝔽𝑞) and 𝐺2 is a subgroup of 𝐸2(𝔽𝑞2 ); explicit generators
for 𝐺1 and 𝐺2 are given in [41, 4.2.1]. We denote the identity element (the point at infinity) in 𝐺1 by O𝐺1and that in 𝐺2 by O𝐺2

. Given an integer 𝑛 and a group element 𝑎 in 𝐺1 or 𝐺2, the scalar multiple 𝑛𝑎 is
defined as usual to be 𝑎+⋯+ 𝑎 (𝑛 times) if 𝑛 > 0 and −𝑎+⋯+−𝑎 (−𝑛 times) if 𝑛 < 0; 0𝑎 is the identity
element of the group.

The bls12_381_MlResult type. Values of the bls12_381_MlResult type are completely opaque
and can only be obtained as a result of bls12_381_millerLoop or by multiplying two existing elements
of type bls12_381_MlResult. We provide neither a serialisation format nor a concrete syntax for values
of this type: they exist only ephemerally during computation. We do not specify 𝐻 , the denotation of
𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝚖𝚕𝚛𝚎𝚜𝚞𝚕𝚝, precisely, but it must be a multiplicative abelian group. See Note 7 for more on
this.

38



4.3.4.3 BLS12-381 built-in functions

Function Signature Denotation Can Note
fail?

bls12_381_G1_add [𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟷_𝚎𝚕𝚎𝚖𝚎𝚗𝚝,
𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟷_𝚎𝚕𝚎𝚖𝚎𝚗𝚝]
→ 𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟷_𝚎𝚕𝚎𝚖𝚎𝚗𝚝

(𝑎, 𝑏) ↦ 𝑎 + 𝑏 No

bls12_381_G1_neg [𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟷_𝚎𝚕𝚎𝚖𝚎𝚗𝚝]
→ 𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟷_𝚎𝚕𝚎𝚖𝚎𝚗𝚝

𝑎 ↦ −𝑎 No
bls12_381_G1_scalarMul [𝚒𝚗𝚝𝚎𝚐𝚎𝚛,

𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟷_𝚎𝚕𝚎𝚖𝚎𝚗𝚝]
→ 𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟷_𝚎𝚕𝚎𝚖𝚎𝚗𝚝

(𝑛, 𝑎) ↦ 𝑛𝑎 No

bls12_381_G1_equal [𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟷_𝚎𝚕𝚎𝚖𝚎𝚗𝚝,
𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟷_𝚎𝚕𝚎𝚖𝚎𝚗𝚝]
→ 𝚋𝚘𝚘𝚕

= No

bls12_381_G1_hashToGroup [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐, 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐]
→ 𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟷_𝚎𝚕𝚎𝚖𝚎𝚗𝚝

𝗁𝖺𝗌𝗁𝐺1
Yes 3

bls12_381_G1_compress [𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟷_𝚎𝚕𝚎𝚖𝚎𝚗𝚝]
→ 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐

𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺1
No 4

bls12_381_G1_uncompress [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐]
→ 𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟷_𝚎𝚕𝚎𝚖𝚎𝚗𝚝

𝗎𝗇𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺1
Yes 5

bls12_381_G2_add [𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟸_𝚎𝚕𝚎𝚖𝚎𝚗𝚝,
𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟸_𝚎𝚕𝚎𝚖𝚎𝚗𝚝]
→ 𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟸_𝚎𝚕𝚎𝚖𝚎𝚗𝚝

(𝑎, 𝑏) ↦ 𝑎 + 𝑏 No

bls12_381_G2_neg [𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟸_𝚎𝚕𝚎𝚖𝚎𝚗𝚝]
→ 𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟸_𝚎𝚕𝚎𝚖𝚎𝚗𝚝

𝑎 ↦ −𝑎 No
bls12_381_G2_scalarMul [𝚒𝚗𝚝𝚎𝚐𝚎𝚛,

𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟸_𝚎𝚕𝚎𝚖𝚎𝚗𝚝]
→ 𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟸_𝚎𝚕𝚎𝚖𝚎𝚗𝚝

(𝑛, 𝑎) ↦ 𝑛𝑎 No

bls12_381_G2_equal [𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟸_𝚎𝚕𝚎𝚖𝚎𝚗𝚝,
𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟸_𝚎𝚕𝚎𝚖𝚎𝚗𝚝]
→ 𝚋𝚘𝚘𝚕

= No

bls12_381_G2_hashToGroup [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐, 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐]
→ 𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟸_𝚎𝚕𝚎𝚖𝚎𝚗𝚝

𝗁𝖺𝗌𝗁𝐺2
Yes 3

bls12_381_G2_compress [𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟸_𝚎𝚕𝚎𝚖𝚎𝚗𝚝]
→ 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐

𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺2
No 4

bls12_381_G2_uncompress [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐]
→ 𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟸_𝚎𝚕𝚎𝚖𝚎𝚗𝚝

𝗎𝗇𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺2
Yes 5

bls12_381_millerLoop [𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟷_𝚎𝚕𝚎𝚖𝚎𝚗𝚝,
𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟸_𝚎𝚕𝚎𝚖𝚎𝚗𝚝]
→ 𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝚖𝚕𝚛𝚎𝚜𝚞𝚕𝚝

𝑒 No 7

bls12_381_mulMlResult [𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝚖𝚕𝚛𝚎𝚜𝚞𝚕𝚝,
𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝚖𝚕𝚛𝚎𝚜𝚞𝚕𝚝]
→ 𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝚖𝚕𝚛𝚎𝚜𝚞𝚕𝚝

(𝑎, 𝑏) ↦ 𝑎𝑏 No 7

bls12_381_finalVerify [𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝚖𝚕𝚛𝚎𝚜𝚞𝚕𝚝,
𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝚖𝚕𝚛𝚎𝚜𝚞𝚕𝚝] → 𝚋𝚘𝚘𝚕

𝜙 No 7

Table 4.15: Batch 4: BLS12-381 built-in functions (continued)
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Note 3. Hashing into𝐺1 and𝐺2. The denotations 𝗁𝖺𝗌𝗁𝐺1
and 𝗁𝖺𝗌𝗁𝐺2

of bls12_381_G1_hashToGroup
and bls12_381_G2_hashToGroup both take an arbitrary bytestring 𝑏 (the message) and a (possibly
empty) bytestring of length at most 255 known as a domain separation tag (DST) [27, 2.2.5] and hash
them to obtain a point in 𝐺1 or 𝐺2 respectively. The details of the hashing process are described in [27]
(see specifically Section 8.8), except that we do not support DSTs of length greater than 255: an attempt
to use a longer DST directly will cause an error. If a longer DST is required then it should be hashed to
obtain a short DST as described in [27, 5.3.3], and then this should be supplied as the second argument to
the appropriate hashToGroup function.
Note 4. Compression for elements of 𝐺1 and 𝐺2. Points in 𝐺1 and 𝐺2 are encoded as bytestrings in
a “compressed” format where only the 𝑥-coordinate of a point is encoded and some metadata is used to
indicate which of two possible 𝑦-coordinates the point has. The encoding format is based on the Zcash
encoding for BLS12-381 points: see [47] or [37, “Serialization”] or [41, Appendices C and D]. In detail,

• Given an element 𝑥 of 𝔽𝑞 , �̃� can be written as a 381-bit binary number: �̃� =
∑380
𝑖=0 𝑏𝑖2

𝑖 with 𝑏𝑖 ∈
{0, 1}. We define 𝖻𝗂𝗍𝗌(𝑥) to be the bitstring 𝑏380⋯ 𝑏0.

• A non-identity element of 𝐺1 can be written in the form (𝑥, 𝑦) with 𝑥, 𝑦 ∈ 𝔽𝑞 . Not every element 𝑥
of 𝔽𝑞 is the 𝑥-coordinate of a point in 𝐺1, but those which are in fact occur as the 𝑥-coordinate of
two distinct points in 𝐺1 whose 𝑦-coordinates are the negatives of each other. A similar statement
is true for 𝔽𝑞2 and 𝐺2. In both cases we denote the smaller of the possible 𝑦-coordinates by 𝑦min(𝑥)and the larger by 𝑦max(𝑥).

• For (𝑥, 𝑦) ∈ 𝐺1∖O𝐺1
we define

𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺1
(𝑥, 𝑦) =

{

𝟣𝟢𝟢 ⋅ 𝖻𝗂𝗍𝗌(𝑥) if 𝑦 = 𝑦min(𝑥)
𝟣𝟢𝟣 ⋅ 𝖻𝗂𝗍𝗌(𝑥) if 𝑦 = 𝑦max(𝑥)

• We encode the identity element of 𝐺1 using
𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺1

(O𝐺1
) = 𝟣𝟣𝟢 ⋅ 𝟢381,

where 𝟢381 denotes a string of 381 𝟢 bits.
Thus in all cases the encoding of an element of 𝐺1 requires exactly 384 bits, or 48 bytes.

• Similarly, every non-identity element of 𝐺2 can be written in the form (𝑥, 𝑦) with 𝑥, 𝑦 ∈ 𝔽𝑞2 . We
define

𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺2
(𝑎 + 𝑏𝑢, 𝑦) =

{

𝟣𝟢𝟢 ⋅ 𝖻𝗂𝗍𝗌(𝑏) ⋅ 𝟢𝟢𝟢 ⋅ 𝖻𝗂𝗍𝗌(𝑎) if 𝑦 = 𝑦min(𝑎 + 𝑏𝑢)
𝟣𝟢𝟣 ⋅ 𝖻𝗂𝗍𝗌(𝑏) ⋅ 𝟢𝟢𝟢 ⋅ 𝖻𝗂𝗍𝗌(𝑎) if 𝑦 = 𝑦max(𝑎 + 𝑏𝑢)

• The identity element of 𝐺2 is encoded using
𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺2

(O𝐺2
) = 𝟣𝟣𝟢 ⋅ 𝟢765.

The encoding of an element of 𝐺2 requires exactly 768 bits, or 96 bytes.
Note that in all cases the most significant bit of a compressed point is 1. In the Zcash serialisation

scheme this indicates that the point is compressed; Zcash also supports a serialisation format where both
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the 𝑥- and 𝑦-coordinates of a point are encoded, and in that case the leading bit of the encoded point is 0.
We do not support this format.
Note 5. Uncompression for elements of 𝐺1 and 𝐺2. There are two (partial) “uncompression” functions
𝗎𝗇𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺1

and 𝗎𝗇𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺2
which convert bytestrings into group elements; these are obtained by

inverting the process described in Note 4.

Uncompression for 𝐺1 elements. Given a bytestring 𝑏, it is checked that 𝑏 contains exactly 48 bytes.
If not, then 𝗎𝗇𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺1

(𝑏) = × (ie, uncompression fails). If the length is equal to 48 bytes, write 𝑏 as
a sequence of bits: 𝑏 = 𝑏383⋯ 𝑏0.

• If 𝑏383 ≠ 1, then 𝗎𝗇𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺1
(𝑏) = ×.

• If 𝑏383 = 𝑏382 = 1 then 𝗎𝗇𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺1
(𝑏) =

{

O𝐺1
if 𝑏381 = 𝑏380 = ⋯ = 𝑏0 = 0

× otherwise.
• If 𝑏383 = 1 and 𝑏382 = 0, let 𝑐 = ∑380

𝑖=0 𝑏𝑖2
𝑖 ∈ ℕ.

– If 𝑐 ≥ 𝑞, 𝗎𝗇𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺1
(𝑏) = ×.

– Otherwise, let 𝑥 = 𝑐 ∈ 𝔽𝑞 and let 𝑧 = 𝑥3+4. If 𝑧 is not a square in 𝔽𝑞 , then 𝗎𝗇𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺1
(𝑏) =

×.
– If 𝑧 is a square then let 𝑦 =

{

𝑦min(𝑥) if 𝑏381 = 0
𝑦max(𝑥) if 𝑏381 = 1.

– Then 𝗎𝗇𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺1
(𝑏) =

{

(𝑥, 𝑦) if (𝑥, 𝑦) ∈ 𝐺1
× otherwise.

Uncompression for 𝐺2 elements. Given a bytestring 𝑏, it is checked that 𝑏 contains exactly 96 bytes.
If not, then 𝗎𝗇𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺2

(𝑏) = × (ie, uncompression fails). If the length is equal to 96 bytes, write 𝑏 as
a sequence of bits: 𝑏 = 𝑏767⋯ 𝑏0.

• If 𝑏767 ≠ 1, then 𝗎𝗇𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺2
(𝑏) = ×.

• If 𝑏767 = 𝑏766 = 1 then 𝗎𝗇𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺2
(𝑏) =

{

O𝐺2
if 𝑏765 = 𝑏764 = ⋯ = 𝑏0 = 0

× otherwise.
• If 𝑏767 = 1 and 𝑏766 = 0, let 𝑐 = ∑383

𝑖=0 𝑏𝑖2
𝑖 and 𝑑 =

∑764
𝑖=384 𝑏𝑖2

𝑖−384 ∈ ℕ.
– If 𝑐 ≥ 𝑞 or 𝑑 ≥ 𝑞, 𝗎𝗇𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺2

(𝑏) = ×.
– Otherwise, let 𝑥 = 𝑐 + 𝑑𝑢 ∈ 𝔽𝑞2 and let 𝑧 = 𝑥3 + 4(𝑢 + 1). If 𝑧 is not a square in 𝔽𝑞2 , then

𝗎𝗇𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺2
(𝑏) = ×.

– If 𝑧 is a square then let 𝑦 =
{

𝑦min(𝑥) if 𝑏765 = 0
𝑦max(𝑥) if 𝑏765 = 1.

– Then 𝗎𝗇𝖼𝗈𝗆𝗉𝗋𝖾𝗌𝗌𝐺2
(𝑏) =

{

(𝑥, 𝑦) if (𝑥, 𝑦) ∈ 𝐺2
× otherwise.
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Note 6. Concrete syntax for BLS12-381 types. Concrete syntax for the 𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟷_𝚎𝚕𝚎𝚖𝚎𝚗𝚝 and
𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟸_𝚎𝚕𝚎𝚖𝚎𝚗𝚝 types is provided via the compression and decompression functions defined in
Notes 4 and 5. Specifically, a value of type 𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟷_𝚎𝚕𝚎𝚖𝚎𝚗𝚝 is denoted by a term of the form
(con bls12_381_G1_element 0x...) where ... consists of 96 hexadecimal digits representing the
48-byte compressed form of the relevant point. Similarly, a value of type 𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟸_𝚎𝚕𝚎𝚖𝚎𝚗𝚝 is
denoted by a term of the form (con bls12_381_G2_element 0x...) where ... consists of 192 hex-
adecimal digits representing the 96-byte compressed form of the relevant point. This syntax is provided
only for use in textual Plutus Core programs, for example for experimentation and testing. We do not
support constants of any of the BLS12-381 types in serialised programs on the Cardano blockchain: see
Section C.3.4. However, for 𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟷_𝚎𝚕𝚎𝚖𝚎𝚗𝚝 and 𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟸_𝚎𝚕𝚎𝚖𝚎𝚗𝚝 one can use the
appropriate uncompression function on a bytestring constant at runtime: for example, instead of

(con bls12_381_G1_element 0xa1e9a0...)

write
[(builtin bls12_381_G1_uncompress) (con bytestring #a1e9a0...)].

No concrete syntax is provided for values of type 𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝚖𝚕𝚛𝚎𝚜𝚞𝚕𝚝. It is not possible to parse such
values, and they will appear as (con bls12_381_mlresult <opaque>) if output by a program.
Note 7. Pairing operations. For efficiency reasons we split the pairing process into two parts: the
bls12_381_millerLoop and bls12_381_finalVerify functions. We assume that we have

• An intermediate multiplicative abelian group 𝐻 .
• A function (not necessarily itself a pairing) 𝑒 ∶ 𝐺1 × 𝐺2 → 𝐻 .
• A cyclic group 𝜇𝑟 of order 𝑟.
• An epimorphism 𝜓 ∶ 𝐻 → 𝜇𝑟 of groups such that 𝜓◦𝑒 ∶ 𝐺1 × 𝐺2 → 𝜇𝑟 is a (nondegenerate,

bilinear) pairing.
Given these ingredients, we define

• J𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝚖𝚕𝚛𝚎𝚜𝚞𝚕𝚝K = 𝐻 .
• J𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝚖𝚞𝚕𝙼𝚕𝚁𝚎𝚜𝚞𝚕𝚝K = the group multiplication operation in 𝐻 .
• J𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝚖𝚒𝚕𝚕𝚎𝚛𝙻𝚘𝚘𝚙K = 𝑒.
• J𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝚏𝚒𝚗𝚊𝚕𝚅𝚎𝚛𝚒𝚏𝚢K = 𝜙, where

𝜙(𝑎, 𝑏) =

{

𝗍𝗋𝗎𝖾 if 𝜓(𝑎𝑏−1) = 1𝜇𝑟
𝖿𝖺𝗅𝗌𝖾 otherwise.

We do not mandate specific choices for 𝐻,𝜇𝑟, 𝑒, and 𝜙, but a plausible choice would be
• 𝐻 = 𝔽×

𝑞12
.

• 𝑒 is the Miller loop associated with the optimal Ate pairing for 𝐸1 and 𝐸2 [45].
• 𝜇𝑟 = {𝑥 ∈ 𝔽×

𝑞12
∶ 𝑥𝑟 = 1}, the group of 𝑟th roots of unity in 𝔽𝑞12 . (There are 𝑟 distinct 𝑟th roots of

unity in 𝔽𝑞12 because the embedding degree of 𝐸1 and 𝐸2 with respect to 𝑟 is 12 (see [21, 4.1]).)
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• 𝜓(𝑥) = 𝑥
𝑞−1
𝑟 .

The functions bls12_381_millerLoop and (especially) bls12_381_finalVerify are expected to be
expensive, so their use should be kept to a minimum. Fortunately most current use cases do not require
many uses of these functions.

4.3.5 Batch 5
The fifth batch of built-in functions adds support for

• Logical and bitwise operations on bytestrings (see [7] and [8]).
• The RIPEMD-160 hash function.

In the table below most of the functions involve operating on individual bits. We will often view byetstrings
as bitstrings 𝑏𝑛−1⋯ 𝑏0 with 𝑏𝑖 ∈ {𝟶, 𝟷} (and 𝑛 necessarily a multiple of 8). Strictly we should use the
functions 𝖻𝗂𝗍𝗌 and 𝖻𝗒𝗍𝖾𝗌 of Section 1.2.3 to convert back and forth between bytestrings and bitstrings, but
we elide this for conciseness and reduce ambiguity by using lower-case names like 𝑏,𝑐 and 𝑑 for bits and
upper-case names like 𝐵 for bytes. We denote the complement of a bit 𝑏 ∈ {𝟶, 𝟷} by �̄�, so �̄� = 𝟷 and
�̄� = 𝟶.

Function Signature Denotation Can Note
fail?

andByteString [𝚋𝚘𝚘𝚕, 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐, 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐]
→ 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐

𝖺𝗇𝖽 No 1
orByteString [𝚋𝚘𝚘𝚕, 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐, 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐]

→ 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐

𝗈𝗋 No 1
xorByteString [𝚋𝚘𝚘𝚕, 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐, 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐]

→ 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐

𝗑𝗈𝗋 No 1
complementByteString [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐] → 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐 𝑏𝑛−1⋯𝑏0 ↦ �̄�𝑛−1⋯�̄�0 No
shiftByteString [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐, 𝚒𝚗𝚝𝚎𝚐𝚎𝚛]

→ 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐

𝗌𝗁𝗂𝖿 𝗍 No 2
rotateByteString [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐, 𝚒𝚗𝚝𝚎𝚐𝚎𝚛]

→ 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐

𝗋𝗈𝗍𝖺𝗍𝖾 No 3
countSetBits [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐] → 𝚒𝚗𝚝𝚎𝚐𝚎𝚛 𝑏𝑛−1⋯𝑏0 ↦ |

|

{𝑖 ∶ 𝑏𝑖 = 1}|
|

No
findFirstSetBit [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐] → 𝚒𝚗𝚝𝚎𝚐𝚎𝚛 𝖿𝖿𝗌 No 4
readBit [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐, 𝚒𝚗𝚝𝚎𝚐𝚎𝚛]

→ 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐

(𝑏𝑛−1⋯𝑏0, 𝑖)

↦

{

𝑏𝑖 if 0 ≤ 𝑖 ≤ 𝑛 − 1
× otherwise

Yes

writeBits [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐, 𝚕𝚒𝚜𝚝 (𝚒𝚗𝚝𝚎𝚐𝚎𝚛),
𝚋𝚘𝚘𝚕] → 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐

𝗐𝗋𝗂𝗍𝖾𝖡𝗂𝗍𝗌 Yes 5
replicateByte [𝚒𝚗𝚝𝚎𝚐𝚎𝚛, 𝚒𝚗𝚝𝚎𝚐𝚎𝚛]

→ 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐

𝗋𝖾𝗉𝗅𝗂𝖼𝖺𝗍𝖾𝖡𝗒𝗍𝖾 Yes 6
ripemd_160 [𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐] → 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐 Compute a RIPEMD-160

hash [18, 25]
No

Table 4.16: Built-in functions, batch 5
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Note 1. Bitwise logical operations. The bitwise logical operations 𝖺𝗇𝖽, 𝗈𝗋, and 𝗑𝗈𝗋 are defined by
extending the usual single-bit logical operations ∧, ∨, and⊕ (respectively) to bytestrings. However, there
is a complication if the bytestrings have different lengths.

• If the first argument of one of the bitwise logical operations is 𝖿𝖺𝗅𝗌𝖾 then the longer bytestring is
(conceptually) truncated on the right to have the same length as the shorter one.

• If the first argument is 𝗍𝗋𝗎𝖾 then the shorter bytestring is (conceptually) extended on the right to
have the same length as the longer one. In the case of 𝖺𝗇𝖽 the shorter bytestring is extended with 𝟶

bits and in the case of 𝗈𝗋 and 𝗑𝗈𝗋 it is extended with 𝟷 bits.
Formally the truncation operation mentioned above is defined as a function which removes the rightmost
𝑘 bits from a bitstring:

𝗍𝗋𝗎𝗇𝖼 (𝑏𝑛−1⋯𝑏0, 𝑘) = 𝑏𝑛−1⋯𝑏𝑘 if 0 ≤ 𝑘 ≤ 𝑛

and the extension operation is defined as a function which appends 𝑘 bits to a bitstring:
ext (𝑏𝑛−1⋯𝑏0, 𝑘, 𝑥) = 𝑏𝑛−1⋯𝑏0 ⋅ 𝑥𝑘−1⋯𝑥0 where 𝑥 ∈ {𝟶, 𝟷}, 𝑘 ≥ 0, and 𝑥0 = 𝑥1 = ⋯ = 𝑥𝑘−1 = 𝑥.

In both cases, the otuput is the same as the input when 𝑘 = 0.
The denotations of the bitwise logical functions are now defined on bitstring representations of bytestrings
as follows, where 𝑏 is a bitstring of length 𝑚 and 𝑐 is a bitstring of length 𝑛:

𝖺𝗇𝖽 (𝖿𝖺𝗅𝗌𝖾, 𝑏, 𝑐) = 𝑑𝑙−1⋯ 𝑑0 where 𝑙 = min{𝑚, 𝑛} and 𝑑𝑖 = 𝗍𝗋𝗎𝗇𝖼 (𝑏, 𝑚 − 𝑙)𝑖 ∧ 𝗍𝗋𝗎𝗇𝖼 (𝑐, 𝑛 − 𝑙)𝑖
𝖺𝗇𝖽 (𝗍𝗋𝗎𝖾, 𝑏, 𝑐) = 𝑑𝑙−1⋯ 𝑑0 where 𝑙 = max{𝑚, 𝑛} and 𝑑𝑖 = ext (𝑏, 𝑙 − 𝑚, 𝟷)𝑖 ∧ ext (𝑐, 𝑙 − 𝑛, 𝟷)𝑖

𝗈𝗋 (𝖿𝖺𝗅𝗌𝖾, 𝑏, 𝑐) = 𝑑𝑙−1⋯ 𝑑0 where 𝑙 = min{𝑚, 𝑛} and 𝑑𝑖 = 𝗍𝗋𝗎𝗇𝖼 (𝑏, 𝑚 − 𝑙)𝑖 ∨ 𝗍𝗋𝗎𝗇𝖼 (𝑐, 𝑛 − 𝑙)𝑖
𝗈𝗋 (𝗍𝗋𝗎𝖾, 𝑏, 𝑐) = 𝑑𝑙−1⋯ 𝑑0 where 𝑙 = max{𝑚, 𝑛} and 𝑑𝑖 = ext (𝑏, 𝑙 − 𝑚, 𝟶)𝑖 ∨ ext (𝑐, 𝑙 − 𝑛, 𝟶)𝑖

𝗑𝗈𝗋 (𝖿𝖺𝗅𝗌𝖾, 𝑏, 𝑐) = 𝑑𝑙−1⋯ 𝑑0 where 𝑙 = min{𝑚, 𝑛} and 𝑑𝑖 = 𝗍𝗋𝗎𝗇𝖼 (𝑏, 𝑚 − 𝑙)𝑖 ⊕ 𝗍𝗋𝗎𝗇𝖼 (𝑐, 𝑛 − 𝑙)𝑖
𝗑𝗈𝗋 (𝗍𝗋𝗎𝖾, 𝑏, 𝑐) = 𝑑𝑙−1⋯ 𝑑0 where 𝑙 = max{𝑚, 𝑛} and 𝑑𝑖 = ext (𝑏, 𝑙 − 𝑚, 𝟶)𝑖 ⊕ ext (𝑐, 𝑙 − 𝑛, 𝟶)𝑖.

Note that although 𝗍𝗋𝗎𝗇𝖼 is applied to both arguments in the above definitions, if the arguments have the
same lengths then in fact neither will be truncated and if the arguments have different lengths then only the
longer one will be truncated. Similarly extension will only occur if the arguments are of different lengths,
in which case the shorter one will be extended.
Note 2. Shifting bits. The shiftByteString builtin takes a bytestring 𝑠 and an integer 𝑘 and shifts the
bits of the bytestring 𝑘 places to the left if 𝑘 ≥ 0 and 𝑘 places to the right if 𝑘 < 0, replacing vacated bits
with 𝟶. The length of the output bytestring is the same as that of the input. The denotation (defined on the
bitstring representation of 𝑠) is

𝗌𝗁𝗂𝖿 𝗍 (𝑏𝑛−1⋯ 𝑏0, 𝑘) = 𝑑𝑛−1⋯ 𝑑0 where 𝑑𝑖 =
{

𝑏𝑖−𝑘 if 0 ≤ 𝑖 − 𝑘 ≤ 𝑛 − 1
𝟶 otherwise.

Note 3. Rotating bits. The rotateByteString builtin takes a bytestring 𝑠 and an integer 𝑘 and
rotates the bits of 𝑠 𝑘 places to the left if 𝑘 ≥ 0 and 𝑘 places to the right if 𝑘 < 0. The length of the
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output bytestring is the same as that of the input. The denotation of rotateByteString (defined on the
bitstring representation of 𝑠) is

𝗋𝗈𝗍𝖺𝗍𝖾 (𝑏𝑛−1⋯ 𝑏0, 𝑘) = 𝑑𝑛−1⋯ 𝑑0 where 𝑑𝑖 = 𝑏(𝑖−𝑘) mod 𝑛.

Note 4. Finding the first set bit in a bytestring. The findFirstSetBit builtin returns the index of the
first nonzero bit in a bytestring, counting from the right. If the bytestring consists entirely of zeros then it
returns −1. The denotation 𝖿𝖿𝗌 ∶ 𝕓∗ → ℤ is

𝖿𝖿𝗌 (𝑏𝑛−1⋯ 𝑏0) =

{

−1 if 𝑏𝑖 = 𝟶 for 0 ≤ 𝑖 ≤ 𝑛 − 1
min {𝑖 ∶ 𝑏𝑖 ≠ 𝟶} otherwise.

Note 5. Writing bits. The denotation 𝗐𝗋𝗂𝗍𝖾𝖡𝗂𝗍𝗌 of the writeBits builtin takes a bytestring 𝑠, a list 𝐽 of
integer indices, and a boolean value 𝑢. An error occurs if any of the indices in 𝐽 is not a valid bit index for
𝑠. If all of the indices are within bounds then for each index 𝑗 in 𝐽 the 𝑗-th bit of 𝑠 is updated according
to the value of 𝑢 (𝟶 for false, 𝟷 for true). The list 𝐽 is allowed to contain repetitions.
Formally,

𝗐𝗋𝗂𝗍𝖾𝖡𝗂𝗍𝗌(𝑏𝑛−1⋯𝑏0, [𝑗0,… , 𝑗𝑙−1], 𝑢) =

{

× if ∃𝑘 ∈ {0,… , 𝑙 − 1} such that 𝑗𝑘 < 0 or 𝑗𝑘 ≥ 𝑛
𝑑𝑛−1⋯𝑑0 otherwise

where

𝑑𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑏𝑖 if 𝑖 ∉ {𝑗0,… , 𝑗𝑙−1}
𝟶 if 𝑖 ∈ {𝑗0,… , 𝑗𝑙−1} and 𝑢 = 𝖿𝖺𝗅𝗌𝖾

𝟷 if 𝑖 ∈ {𝑗0,… , 𝑗𝑙−1} and 𝑢 = 𝗍𝗋𝗎𝖾.

Note 6. Replicating bytes. The replicateByte builtin takes a length 𝑙 between 0 and 8192 and an
integer 𝐵 between 0 and 255 and produces a bytestring of length 𝑙. It fails if either argument is outside
the required bounds. The denotation is

𝗋𝖾𝗉𝗅𝗂𝖼𝖺𝗍𝖾𝖡𝗒𝗍𝖾 (𝑙, 𝐵) =

{

𝐵0⋯𝐵𝑙−1 (𝐵𝑖 = 𝐵 for all 𝑖) if 0 ≤ 𝑙 ≤ 8192 and 𝐵 ∈ 𝔹
× otherwise.

Note that unlike the other denotations in this section we are viewing the output as a bytestring here, not a
bitstring.
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Appendix A

Formally Verified Behaviours

To follow.

46



Appendix B

Serialising data Objects Using the
CBOR Format

B.1 Introduction
In this section we define a CBOR encoding for the data type introduced in Section 4.3.1.1. For ease of
reference we reproduce the definition of the Haskell Data type, which we may regard as the definition
of the Plutus data type. Other representations are of course possible, but this is useful for the present
discussion.

data Data =
Constr Integer [Data]
| Map [(Data, Data)]
| List [Data]
| I Integer
| B ByteString

The CBOR encoding defined here uses basic CBOR encodings as defined in the CBOR standard [17], but
with some refinements. Specifically

• We use a restricted encoding for bytestrings which requires that bytestrings are serialised as se-
quences of blocks, each block being at most 64 bytes long. Any encoding of a bytestring using our
scheme is valid according to the CBOR specification, but the CBOR specification permits some
encodings which we do not accept. The purpose of the size restriction is to prevent arbitrary data
from bring stored on the blockchain.

• Large integers (less than −264 or greater than 264 − 1) are encoded via the restricted bytestring
encoding; other integers are encoded as normal. Again, our restricted encodings are compatible
with the CBOR specification.

• The Constr case of the data type is encoded using a scheme which is an early version of a proposed
extension of the CBOR specification to include encodings for discriminated unions. See [22] and
[16, Section 9.1].
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B.2 Notation
We introduce some extra notation for use here and in Appendix C.
The notation 𝑓 ∶ 𝑋 ⇀ 𝑌 indicates that 𝑓 is a partial map from 𝑋 to 𝑌 . We denote the empty bytestring
by 𝜖 and (as in 1.2.2) use 𝓁(𝑠) to denote the length of a bytestring 𝑠 and ⋅ to denote the concatenation of
two bytestrings, and also the operation of prepending or appending a byte to a bytestring. We will also
make use of the div and mod functions described in Note 1 in Section 4.3.1.

Encoders and decoders. Recall that 𝔹 = ℕ[0,255], the set of integral values that can be represented in a
single byte, and that we identify bytestrings with elements of 𝔹∗. We will describe the CBOR encoding
of the data type by defining families of encoding functions (or encoders)

E𝑋 ∶ 𝑋 → 𝔹∗

and decoding functions (or decoders)
D𝑋 ∶ 𝔹∗ ⇀ 𝔹∗ ×𝑋

for various sets 𝑋, such as the set ℤ of integers and the set of all data items. The encoding function E𝑋takes an element 𝑥 ∈ 𝑋 and converts it to a bytestring, and the decoding function D𝑋 takes a bytestring 𝑠,
decodes some initial prefix of 𝑠 to a value 𝑥 ∈ 𝑋, and returns the remainder of 𝑠 together with 𝑥. Decoders
for complex types will often be built up from decoders for simpler types. Decoders are partial functions
because they can fail, for instance, if there is insufficient input, or if the input is not well formed, or if a
decoded value is outside some specified range.

Many of the decoders which we define below involve a number of cases for different forms of input,
and we implicitly assume that the decoder fails if none of the cases applies. We also assume that if a
decoder fails then so does any other decoder which invokes it, so any failure when attempting to decode a
particular data item in a bytestring will cause the entire decoding process to fail (immediately).

B.3 The CBOR format
A CBOR-encoded item consists of a bytestring beginning with a head which occupies 1,2,3,5, or 9 bytes.
Depending on the contents of the head, some sequence of bytes following it may also contribute to the
encoded item. The first three bits of the head are interpreted as a natural number between 0 and 7 (the
major type) which gives basic information about the type of the following data. The remainder of the
head is called the argument of the head and is used to encode further information, such as the value of
an encoded integer or the size of a list of encoded items. Encodings of complex objects may occupy the
bytes following the head, and these will typically contain further encoded items.

B.4 Encoding and decoding the heads of CBOR items
For 𝑖 ∈ ℕ we define a function 𝖻𝑖 ∶ ℕ → 𝔹 which returns the 𝑖-th byte of an integer, with the 0-th byte
being the least significant:

𝖻𝑖(𝑛) = mod(div(𝑛, 256𝑖), 256).

We use this to define for each 𝑘 ≥ 1 a partial function 𝖾𝑘 ∶ ℕ ⇀ 𝔹∗ which converts a sufficiently small
integer to a bytestring of length 𝑘 (possibly with leading zeros):

𝖾𝑘(𝑛) = [𝖻𝑘−1(𝑛),… , 𝖻0(𝑛)] if 𝑛 ≤ 256𝑘 − 1.
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This function fails if the input is too large to fit into a 𝑘-byte bytestring.
We also define inverse functions 𝖽𝑘 ∶ 𝔹∗ ⇀ ℕ which decode a 𝑘-byte natural number from the start

of a bytestring, failing if there is insufficient input:

𝖽𝑘(𝑠) = (𝑠′,
𝑘−1
∑

𝑖=0
256𝑖𝑏𝑖) if 𝑠 = [𝑏𝑘−1,… , 𝑏0] ⋅ 𝑠′.

We now define an encoder E𝗁𝖾𝖺𝖽 ∶ ℕ[0,7]×ℕ[0,264−1] → 𝔹∗ which takes a major type and a natural number
and encodes them as a CBOR head using the standard encoding:

E𝗁𝖾𝖺𝖽(𝑚, 𝑛) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[32𝑚 + 𝑛] if 𝑛 ≤ 23
(32𝑚 + 24) ⋅ 𝖾1(𝑛) if 24 ≤ 𝑛 ≤ 255
(32𝑚 + 25) ⋅ 𝖾2(𝑛) if 256 ≤ 𝑛 ≤ 2562 − 1
(32𝑚 + 26) ⋅ 𝖾4(𝑛) if 2562 ≤ 𝑛 ≤ 2564 − 1
(32𝑚 + 27) ⋅ 𝖾8(𝑛) if 2564 ≤ 𝑛 ≤ 2568 − 1.

The corresponding decoder D𝗁𝖾𝖺𝖽 ∶ 𝔹∗ ⇀ 𝔹∗ × ℕ[0,7] × ℕ[0,264−1] is given by

D𝗁𝖾𝖺𝖽(𝑛 ⋅ 𝑠) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(𝑠, div(𝑛, 32),mod(𝑛, 32)) if mod(𝑛, 32) ≤ 23
(𝑠′, div(𝑛, 32), 𝑘) if mod(𝑛, 32) = 24 and 𝖽1(𝑠) = (𝑠′, 𝑘)
(𝑠′, div(𝑛, 32), 𝑘) if mod(𝑛, 32) = 25 and 𝖽2(𝑠) = (𝑠′, 𝑘)
(𝑠′, div(𝑛, 32), 𝑘) if mod(𝑛, 32) = 26 and 𝖽4(𝑠) = (𝑠′, 𝑘)
(𝑠′, div(𝑛, 32), 𝑘) if mod(𝑛, 32) = 27 and 𝖽8(𝑠) = (𝑠′, 𝑘).

This function is undefined if the input is the empty bytestring 𝜖, if the input is too short, or if its initial
byte is not of the expected form.

Heads for indefinite-length items. The functions E𝗁𝖾𝖺𝖽 and D𝗁𝖾𝖺𝖽 defined above are used for a number
of purposes. One use is to encode integers less than 64 bits, where the argument of the head is the relevant
integer. Another use is for “definite-length” encodings of items such as bytestrings and lists, where the
head contains the length 𝑛 of the object and is followed by some encoding of the object itself (for example
a sequence of 𝑛 bytes for a bytestring or a sequence of 𝑛 encoded objects for the elements of a list). It is
also possible to have “indefinite-length” encodings of objects such as lists and arrays, which do not specify
the length of an object in advance: instead a special head with argument 31 is emitted, followed by the
encodings of the individual items; the end of the sequence is marked by a “break” byte with value 255.
We define an encoder E𝗂𝗇𝖽𝖾𝖿 ∶ ℕ[2,5] → 𝔹∗ and a decoder D𝗂𝗇𝖽𝖾𝖿 ∶ 𝔹∗ ⇀ 𝔹∗ × ℕ[2,5] which deal with
indefinite heads for a given major type:

E𝗂𝗇𝖽𝖾𝖿 (𝑚) = [32𝑚 + 31]
D𝗂𝗇𝖽𝖾𝖿 (𝑛 ⋅ 𝑠) = (𝑠, 𝑚) if 𝑛 = 32𝑚 + 31.

Note that E𝗂𝗇𝖽𝖾𝖿 and D𝗂𝗇𝖽𝖾𝖿 are only defined for𝑚 ∈ {2, 3, 4, 5} (and we shall only use them in these cases).
The case 𝑚 = 31 corresponds to the break byte and for 𝑚 ∈ {0, 1, 6} the value is not well formed: see [17,
3.2.4].
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B.5 Encoding and decoding bytestrings
The standard CBOR encoding of bytestrings encodes a bytestring as either a definite-length sequence of
bytes (the length being given in the head) or as an indefinite-length sequence of definite-length “chunks”
(see [17, §§3.1 and 3.4.2]). We use a similar scheme, but only allow chunks of length up to 64. To this
end, suppose that 𝑎 = [𝑎1,… , 𝑎64𝑘+𝑟] ∈ 𝔹∗∖{𝜖} where 𝑘 ≥ 0 and 0 ≤ 𝑟 ≤ 63. We define the canonical
64-byte decomposition �̄� of 𝑎 to be

�̄� = [[𝑎1,… , 𝑎64], [𝑎65,… , 𝑎128],… , [𝑎64(𝑘−1)+1,… , 𝑎64𝑘]] ∈ (𝔹∗)∗

if 𝑟 = 0 and

�̄� = [[𝑎1,… , 𝑎64], [𝑎65,… , 𝑎128],… , [𝑎64(𝑘−1)+1,… , 𝑎64𝑘], [𝑎64𝑘+1,… , 𝑎64𝑘+𝑟]] ∈ (𝔹∗)∗

if 𝑟 > 0. The canonical decomposition of the empty list is 𝜖 = [].
We define the encoder E𝔹∗ ∶ 𝔹∗ → 𝔹∗ for bytestrings by encoding bytestrings of size up to 64 using
the standard CBOR encoding and encoding larger bytestrings by breaking them up into 64-byte chunks
(with the final chunk possibly being less than 64 bytes long) and encoding them as an indefinite-length
list (major type 2 indicates a bytestring):

E𝔹∗ (𝑠) =

⎧

⎪

⎨

⎪

⎩

E𝗁𝖾𝖺𝖽(2,𝓁(𝑠)) ⋅ 𝑠 if 𝓁(𝑠) ≤ 64
E𝗂𝗇𝖽𝖾𝖿 (2) ⋅ E𝗁𝖾𝖺𝖽(2,𝓁(𝑐1)) ⋅ 𝑐1 ⋅ E𝗁𝖾𝖺𝖽(2,𝓁(𝑐2)) ⋅ ⋯

⋯ ⋅ 𝑐𝑛−1 ⋅ E𝗁𝖾𝖺𝖽(2,𝓁(𝑐𝑛)) ⋅ 𝑐𝑛 ⋅ 255 if 𝓁(𝑠) > 64 and �̄� = [𝑐1,… , 𝑐𝑛].

The decoder is slightly more complicated. Firstly, for every 𝑛 ≥ 0 we define a decoder D(𝑛)
𝖻𝗒𝗍𝖾𝗌

∶ 𝔹∗ ⇀

𝔹∗ × 𝔹∗ which extracts an 𝑛-byte prefix from its input (failing in the case of insufficient input):

D(𝑛)
𝖻𝗒𝗍𝖾𝗌

(𝑠) =

{

(𝑠, 𝜖) if 𝑛 = 0
(𝑠′′, 𝑏 ⋅ 𝑡) if 𝑠 = 𝑏 ⋅ 𝑠′ and D(𝑛−1)

𝖻𝗒𝗍𝖾𝗌
(𝑠′) = (𝑠′′, 𝑡).

Secondly, we define a decoder D𝖻𝗅𝗈𝖼𝗄 ∶ 𝔹∗ ⇀ 𝔹∗ × 𝔹∗ which attempts to extract a bytestring of length at
most 64 from its input; D𝖻𝗅𝗈𝖼𝗄 (and any other function which calls it) will fail if it encounters a bytestring
which is greater than 64 bytes.

D𝖻𝗅𝗈𝖼𝗄(𝑠) = D(𝑛)
𝖻𝗒𝗍𝖾𝗌

(𝑠′) if D𝗁𝖾𝖺𝖽(𝑠) = (𝑠′, 2, 𝑛) and 𝑛 ≤ 64.

Thirdly, we define a decoder D𝖻𝗅𝗈𝖼𝗄𝗌 ∶ 𝔹∗ ⇀ 𝔹∗ × 𝔹∗ which decodes a sequence of blocks and returns
their concatenation.

D𝖻𝗅𝗈𝖼𝗄𝗌(𝑠) =

{

(𝑠′, 𝜖) if 𝑠 = 255 ⋅ 𝑠′

(𝑠′′, 𝑡 ⋅ 𝑡′) if D𝖻𝗅𝗈𝖼𝗄(𝑠) = (𝑠′, 𝑡) and D𝖻𝗅𝗈𝖼𝗄𝗌(𝑠′) = (𝑠′′, 𝑡′).

Finally we define the decoder D𝔹∗ ∶ 𝔹∗ ⇀ 𝔹∗ × 𝔹∗ for bytestrings by

D𝔹∗ (𝑠) =

{

(𝑠′, 𝑡) if D𝖻𝗅𝗈𝖼𝗄(𝑠) = (𝑠′, 𝑡)
D𝖻𝗅𝗈𝖼𝗄𝗌(𝑠′) if D𝗂𝗇𝖽𝖾𝖿 (𝑠) = (𝑠′, 2).

This looks for either a single block or an indefinite-length list of blocks, in the latter case returning their
concatenation. It will accept the output of E𝔹∗ but will reject bytestring encodings containing any blocks
greater than 64 bytes long, even if they are valid bytestring encodings according to the CBOR specification.
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B.6 Encoding and decoding integers
As with bytestrings we use a specialised encoding scheme for integers which prohibits encodings with
overly-long sequences of arbitrary data. We encode integers in ℕ[−264,264−1] as normal (see [17, §3.1]:
the major type is 0 for positive integers and 1 for negative ones) and larger ones by emitting a CBOR tag
(major type 6; argument 2 for positive numbers and 3 for negative numbers) to indicate the sign, then
converting the integer to a bytestring and emitting that using the encoder defined above. This encoding
scheme is the same as the standard one except for the size limitations.
We firstly define conversion functions 𝗂𝗍𝗈𝗌 ∶ ℕ → 𝔹∗ and 𝗌𝗍𝗈𝗂 ∶ 𝔹∗ → ℕ by

𝗂𝗍𝗈𝗌(𝑛) =

{

𝜖 if 𝑛 = 0
𝗂𝗍𝗈𝗌(div(𝑛, 256)) ⋅mod(𝑛, 256) if 𝑛 > 0.

and
𝗌𝗍𝗈𝗂(𝑙) =

{

0 if 𝑙 = 𝜖
256 × 𝗌𝗍𝗈𝗂(𝑙′) + 𝑛 if 𝑙 = 𝑙′ ⋅ 𝑛 with 𝑛 ∈ 𝔹.

The encoder Eℤ ∶ ℤ → 𝔹∗ for integers is now defined by

Eℤ(𝑛) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

E𝗁𝖾𝖺𝖽(0, 𝑛) if 0 ≤ 𝑛 ≤ 264 − 1
E𝗁𝖾𝖺𝖽(6, 2) ⋅ E𝔹∗ (𝗂𝗍𝗈𝗌(𝑛)) if 𝑛 ≥ 264

E𝗁𝖾𝖺𝖽(1,−𝑛 − 1) if −264 ≤ 𝑛 ≤ −1
E𝗁𝖾𝖺𝖽(6, 3) ⋅ E𝔹∗ (𝗂𝗍𝗈𝗌(−𝑛 − 1)) if 𝑛 ≤ −264 − 1.

The decoder Dℤ ∶ 𝔹∗ ⇀ 𝔹∗×ℤ inverts this process. The decoder is in fact slightly more permissive than
the encoder because it also accepts small integers encoded using the scheme for larger ones. However, the
CBOR standard permits integer encodings which contain bytestrings longer than 64 bytes and it will not
accept those.

Dℤ(𝑠) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝑠′, 𝑛) if D𝗁𝖾𝖺𝖽(𝑠) = (𝑠′, 0, 𝑛)
(𝑠′,−𝑛 − 1) if D𝗁𝖾𝖺𝖽(𝑠) = (𝑠′, 1, 𝑛)
(𝑠′′, 𝗌𝗍𝗈𝗂(𝑏)) if D𝗁𝖾𝖺𝖽(𝑠) = (𝑠′, 6, 2) and D𝔹∗ (𝑠′) = (𝑠′′, 𝑏)
(𝑠′′,−𝗌𝗍𝗈𝗂(𝑏) − 1) if D𝗁𝖾𝖺𝖽(𝑠) = (𝑠′, 6, 3) and D𝔹∗ (𝑠′) = (𝑠′′, 𝑏).

B.7 Encoding and decoding data

It is now quite straightforward to encode most data values. The main complication is in the encoding of
constructor tags (the number 𝑖 in 𝙲𝚘𝚗𝚜𝚝𝚛 𝑖 𝑙).

The encoder. The encoder is given by
E𝚍𝚊𝚝𝚊(𝙼𝚊𝚙 𝑙) = E𝗁𝖾𝖺𝖽(5,𝓁(𝑙)) ⋅ E(𝚍𝚊𝚝𝚊𝟸)∗ (𝑙)
E𝚍𝚊𝚝𝚊(𝙻𝚒𝚜𝚝 𝑙) = E𝗂𝗇𝖽𝖾𝖿 (4) ⋅ E𝚍𝚊𝚝𝚊∗ (𝑙) ⋅ 255
E𝚍𝚊𝚝𝚊(𝙲𝚘𝚗𝚜𝚝𝚛 𝑖 𝑙) = Ectag(𝑖) ⋅ E𝗂𝗇𝖽𝖾𝖿 (4) ⋅ E𝚍𝚊𝚝𝚊∗ (𝑙) ⋅ 255
E𝚍𝚊𝚝𝚊(𝙸 𝑛) = Eℤ(𝑛)
E𝚍𝚊𝚝𝚊(𝙱 𝑠) = E𝔹∗ (𝑠).
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This definition uses encoders for lists of data items, lists of pairs of data items, and constructor tags as
follows:

E𝚍𝚊𝚝𝚊∗ ([𝑑1,… , 𝑑𝑛]) = E𝚍𝚊𝚝𝚊(𝑑1) ⋅ ⋯ ⋅ E𝚍𝚊𝚝𝚊(𝑑𝑛)
E(𝚍𝚊𝚝𝚊𝟸)∗ ([(𝑘1, 𝑑1),… , (𝑘𝑛, 𝑑𝑛)]) = E𝚍𝚊𝚝𝚊(𝑘1) ⋅ E𝚍𝚊𝚝𝚊(𝑑1) ⋅ ⋯ ⋅ E𝚍𝚊𝚝𝚊(𝑘𝑛) ⋅ E𝚍𝚊𝚝𝚊(𝑑𝑛)

Ectag(𝑖) =
⎧

⎪

⎨

⎪

⎩

E𝗁𝖾𝖺𝖽(6, 121 + 𝑖) if 0 ≤ 𝑖 ≤ 6
E𝗁𝖾𝖺𝖽(6, 1280 + (𝑖 − 7)) if 7 ≤ 𝑖 ≤ 127
E𝗁𝖾𝖺𝖽(6, 102) ⋅ E𝗁𝖾𝖺𝖽(4, 2) ⋅ Eℤ(𝑖) otherwise.

In the final case of Ectag we emit a head with major type 4 and argument 2. This indicates that an encoding
of a list of length 2 will follow: the first element of the list is the constructor number and the second is
the argument list of the constructor, which is actually encoded in E𝚍𝚊𝚝𝚊. It might be conceptually more
accurate to have a single encoder which would encode both the constructor tag and the argument list, but
this would increase the complexity of the notation even further. Similar remarks apply to Dctag below.

The decoder. The decoder is given by

D𝚍𝚊𝚝𝚊(𝑠) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(𝑠′′, 𝙼𝚊𝚙 𝑙) if D𝗁𝖾𝖺𝖽(𝑠) = (𝑠′, 5, 𝑛) and D(𝑛)
(𝚍𝚊𝚝𝚊𝟸)∗

(𝑠′) = (𝑠′′, 𝑙)

(𝑠′, 𝙻𝚒𝚜𝚝 𝑙) if D𝚍𝚊𝚝𝚊∗ (𝑠) = (𝑠′, 𝑙)
(𝑠′′, 𝙲𝚘𝚗𝚜𝚝𝚛 𝑖 𝑙) if Dctag(𝑠) = (𝑠′, 𝑖) and D𝚍𝚊𝚝𝚊∗ (𝑠′) = (𝑠′′, 𝑙)
(𝑠′, 𝙸 𝑛) if Dℤ(𝑠) = (𝑠′, 𝑛)
(𝑠′, 𝙱 𝑏) if D𝔹∗ (𝑠) = (𝑠′, 𝑏)

where
D𝚍𝚊𝚝𝚊∗ (𝑠) =

{

D(𝑛)
𝚍𝚊𝚝𝚊∗ (𝑠

′) if D𝗁𝖾𝖺𝖽(𝑠) = (𝑠′, 4, 𝑛)
D𝗂𝗇𝖽𝖾𝖿

𝚍𝚊𝚝𝚊∗ (𝑠
′) if D𝗂𝗇𝖽𝖾𝖿 (𝑠) = (𝑠′, 4)

D(𝑛)
𝚍𝚊𝚝𝚊∗ (𝑠) =

{

(𝑠, 𝜖) if 𝑛 = 0
(𝑠′′, 𝑑 ⋅ 𝑙) if D𝚍𝚊𝚝𝚊(𝑠) = (𝑠′, 𝑑) and D(𝑛−1)

𝚍𝚊𝚝𝚊∗ (𝑠
′) = (𝑠′′, 𝑙)

D𝗂𝗇𝖽𝖾𝖿
𝚍𝚊𝚝𝚊∗ (𝑠) =

{

(𝑠′, 𝜖) if 𝑠 = 255 ⋅ 𝑠′

(𝑠′′, 𝑑 ⋅ 𝑙) if D𝚍𝚊𝚝𝚊(𝑠) = (𝑠′, 𝑑) and D𝗂𝗇𝖽𝖾𝖿
𝚍𝚊𝚝𝚊∗ (𝑠

′) = (𝑠′′, 𝑙)

D(𝑛)
(𝚍𝚊𝚝𝚊𝟸)∗

(𝑠) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(𝑠, 𝜖) if 𝑛 = 0

(𝑠′′′, (𝑘, 𝑑) ⋅ 𝑙)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

if 𝑛 > 0
and D𝚍𝚊𝚝𝚊(𝑠) = (𝑠′, 𝑘)
and D𝚍𝚊𝚝𝚊(𝑠′) = (𝑠′′, 𝑑)
and D(𝑛−1)

(𝚍𝚊𝚝𝚊𝟸)∗
(𝑠′′) = (𝑠′′′, 𝑙)

Dctag(𝑠) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(𝑠′, 𝑖 − 121) if D𝗁𝖾𝖺𝖽(𝑠) = (𝑠′, 6, 𝑖) and 121 ≤ 𝑖 ≤ 127
(𝑠′, (𝑖 − 1280) + 7) if D𝗁𝖾𝖺𝖽(𝑠) = (𝑠′, 6, 𝑖) and 1280 ≤ 𝑖 ≤ 1400

(𝑠′′′, 𝑖)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

if D𝗁𝖾𝖺𝖽(𝑠) = (𝑠′, 6, 102)
and D𝗁𝖾𝖺𝖽(𝑠′) = (𝑠′′, 4, 2)
and Dℤ(𝑠′′) = (𝑠′′′, 𝑖)
and 0 ≤ 𝑖 ≤ 264 − 1.
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Note that the decoders for List and Constr accept both definite-length and indefinite-length lists of
encoded data values, but the decoder for Map only accepts definite-length lists (and the length is the
number of pairs in the map). This is consistent with CBOR’s standard encoding of arrays and lists (major
type 4) and maps (major type 5).

Note also that the encoder Ectag accepts arbitrary integer values for Constr tags, but (for compatibility
with [22]) the decoder Dctag only accepts tags in ℕ[0,264−1]. This means that some valid Plutus Core
programs can be serialised but not deserialised, and is the reason for the recommendation in Section 4.3.1.1
that only constructor tags between 0 and 264 − 1 should be used.
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Appendix C

Serialising Plutus Core Terms and
Programs Using the flat Format

We use the flat format [11] to serialise Plutus Core terms, and we regard this format as being the definitive
concrete representation of Plutus Core programs. For compactness we generally (and always for scripts
on the blockchain) replace names with de Bruijn indices (see Section 2.1.3) in serialised programs.

We use bytestrings for serialisation, but it is convenient to define the serialisation and deserialisation
process in terms of strings of bits. Some extra bits of padding are added at the end of the encoding of
a program to ensure that the number of bits in the output is a multiple of 8, and this allows us to regard
serialised programs as bytestrings in the obvious way.

See Section C.4 for some restrictions on serialisation specific to the Cardano blockchain.

Note: flat versus CBOR. Much of the Cardano codebase uses the CBOR format for serialisation; how-
ever, it is important that serialised scripts not be too large. CBOR pays a price for being a self-describing
format. The size of the serialised terms is consistently larger than a format that is not self-describing:
benchmarks show that flat encodings of Plutus Core scripts are smaller than CBOR encodings by about
35% (without using compression).

C.1 Encoding and decoding
Firstly recall some notation from Section 1.2. The set of all finite sequences of bits is denoted by 𝖻∗ =
{𝟶, 𝟷}∗. For brevity we write a sequence of bits in the form 𝑏𝑛−1⋯ 𝑏0 instead of [𝑏𝑛−1,… , 𝑏0]: thus
𝟶𝟷𝟷𝟶𝟶𝟷 instead of [𝟶, 𝟷, 𝟷, 𝟶, 𝟶, 𝟷]). We denote the empty sequence by 𝜖, and use 𝓁(𝑠) to denote the length
of a sequence of bits, and ⋅ to denote concatenation (or prepending or appending a single bit to a sequence
of bits).
Similarly to the CBOR encoding for data described in Appendix B, we will describe the flat encoding by
defining families of encoding functions (or encoders)

𝖤𝑋 ∶ 𝖻∗ ×𝑋 → 𝖻∗

and (partial) decoding functions (or decoders)
𝖣𝑋 ∶ 𝖻∗ ⇀ 𝖻∗ ×𝑋
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for various sets𝑋, such as the set ℤ of integers and the set of all Plutus Core terms. The encoding function
𝖤𝑋 takes a sequence 𝑠 ∈ 𝖻∗ and an element 𝑥 ∈ 𝑋 and produces a new sequence of bits by appending the
encoding of 𝑥 to 𝑠, and the decoding function 𝖣𝑋 takes a sequence of bits, decodes some initial prefix of
𝑠 to a value 𝑥 ∈ 𝑋, and returns the remainder of 𝑠 together with 𝑥.

Encoding functions basically operate by decomposing an object into subobjects and concatenating the
encodings of the subobject; however it is sometimes necessary to add some padding between subobjects
in order to make sure that parts of the output are aligned on byte boundaries, and for this reason (unlike
the CBOR encoding for data) all of our encoding functions have a first argument containing all of the
previous output, so that it can be examined to determine how much alignment is required.

As in the case of CBOR, decoding functions are partial: they can fail if, for instance, there is insufficient
input, or if a decoded value is outside some specified range. To simplify notation we will mention any
preconditions separately, with the assumption that the decoder will fail if the preconditions are not met;
we also make a blanket assumption that all decoders fail if there is not enough input for them to proceed.
Many of the definitions of decoders construct objects by calling other decoders to obtain subobjects which
are then composed, and these are often introduced by a condition of the form “if 𝖣𝑋(𝑠) = 𝑥”. Conditions
like this should be read as implicitly saying that if the decoder 𝖣𝑋 fails then the whole decoding process
fails.

C.1.1 Padding
The encoding functions mentioned above produce sequences of bits, but we sometimes need sequences of
bytes. To this end we introduce a functions 𝗉𝖺𝖽 ∶ 𝖻∗ → 𝖻∗ which adds a sequence of 𝟶s followed by a 𝟷 to
a sequence 𝑠 to get a sequence whose length is a multiple of 8; if 𝑠 is a sequence such that 𝓁(𝑠) is already
a multiple of 8 then 𝗉𝖺𝖽 still adds an extra byte of padding; 𝗉𝖺𝖽 is used both for internal alignment (for
example, to make sure that the contents of a bytestring are aligned on byte boundaries) and at the end of
a complete encoding of a Plutus Core program to to make the length a multiple of 8 bits. Symbolically,

𝗉𝖺𝖽(𝑠) = 𝑠 ⋅ 𝗉𝑘 if 𝓁(𝑠) = 8𝑛 + 𝑘 with 𝑛, 𝑘 ∈ ℕ and 0 ≤ 𝑘 ≤ 7

where
𝗉0 = 𝟶𝟶𝟶𝟶𝟶𝟶𝟶𝟷

𝗉1 = 𝟶𝟶𝟶𝟶𝟶𝟶𝟷

𝗉2 = 𝟶𝟶𝟶𝟶𝟶𝟷

𝗉3 = 𝟶𝟶𝟶𝟶𝟷

𝗉4 = 𝟶𝟶𝟶𝟷

𝗉5 = 𝟶𝟶𝟷

𝗉6 = 𝟶𝟷

𝗉7 = 𝟷.

We also define a (partial) inverse function 𝗎𝗇𝗉𝖺𝖽 ∶ 𝖻∗ ⇀ 𝖻∗ which discards padding:
𝗎𝗇𝗉𝖺𝖽(𝑞 ⋅ 𝑠) = 𝑠 if 𝑞 = 𝗉𝑖 for some 𝑖 ∈ {0, 1, 2, 3, 4, 5, 6, 7}.

This can fail if the padding is not of the expected form or if the input is the empty sequence 𝜖.
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C.2 Basic flat encodings
C.2.1 Fixed-width natural numbers
We often wish to encode and decode natural numbers which fit into some fixed number of bits, and we do
this simply by encoding them as their binary expansion (most significant bit first), adding leading zeros if
necessary. More precisely for 𝑛 ≥ 1 we define an encoder

𝖤𝑛 ∶ 𝖻∗ × ℕ[0,2𝑛−1−1] → 𝖻∗

by
𝖤𝑛(𝑠,

𝑛−1
∑

𝑖=0
𝑏𝑖2𝑖) = 𝑠 ⋅ 𝑏𝑛−1⋯ 𝑏0 (𝑏𝑖 ∈ {0, 1})

and a decoder
𝖣𝑛 ∶ 𝖻∗ ⇀ 𝖻∗ × ℕ[0,2𝑛−1−1]

by
𝖣𝑛(𝑏𝑛−1⋯ 𝑏0 ⋅ 𝑠) = (𝑠,

𝑛−1
∑

𝑖=0
𝑏𝑖2𝑖).

As in Appendix B, ℕ[𝑎,𝑏] denotes the closed interval of integers {𝑛 ∈ ℤ ∶ 𝑎 ≤ 𝑛 ≤ 𝑏}. Note that 𝑛 here is
a variable (not a fixed label) so we are defining whole families of encoders 𝖤1,𝖤2,𝖤3,… and and decoders
𝖣1,𝖣2,𝖣3….

C.2.2 Lists
Suppose that we have a set 𝑋 for which we have defined an encoder 𝖤𝑋 and a decoder 𝖣𝑋 ; we define an
encoder ⃖⃗𝖤𝑋 which encodes lists of elements of 𝑋 by emitting the encodings of the elements of the list,
each preceded by a 𝟷 bit, then emitting a 𝟶 bit to mark the end of the list.

⃖⃗𝖤𝑋(𝑠, []) = 𝑠 ⋅ 𝟶
⃖⃗𝖤𝑋(𝑠, [𝑥1,… , 𝑥𝑛]) = ⃖⃗𝖤𝑋(𝑠 ⋅ 𝟷 ⋅ 𝖤𝑋(𝑥1), [𝑥2,… , 𝑥𝑛]).

The corresponding decoder is given by
⃖⃖⃗𝖣𝑋(𝟶 ⋅ 𝑠) = (𝑠, [])
⃖⃖⃗𝖣𝑋(𝟷 ⋅ 𝑠) = (𝑠′′, 𝑥 ⋅ 𝑙) if 𝐷𝑋(𝑠) = (𝑠′, 𝑥) and ⃖⃖⃗𝖣𝑋(𝑠′) = (𝑠′′, 𝑙).

C.2.3 Natural numbers
We encode natural numbers by splitting their binary representations into sequences of 7-bit blocks, then
emitting these as a list with the least significant block first:

𝖤ℕ(𝑠,
𝑛−1
∑

𝑖=0
𝑘𝑖27𝑖) = ⃖⃗𝖤7(𝑠, [𝑘0,… , 𝑘𝑛−1])

(where 𝑘𝑖 ∈ ℤ and 0 ≤ 𝑘𝑖 ≤ 127). The decoder is

𝖣ℕ(𝑠) = (𝑠′,
𝑛−1
∑

𝑖=0
𝑘𝑖27𝑖) if ⃖⃖⃗𝖣7(𝑠) = (𝑠′, [𝑘0,… , 𝑘𝑛−1]).
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C.2.4 Integers
Signed integers are encoded by converting them to natural numbers using the zigzag encoding (0 ↦
0,−1 ↦ 1, 1 ↦ 2,−2 ↦ 3, 2 ↦ 4,…) and then encoding the result using 𝖤ℕ:

𝖤ℤ(𝑠, 𝑛) =

{

𝖤ℕ(𝑠, 2𝑛) if 𝑛 ≥ 0
𝖤ℕ(𝑠,−2𝑛 − 1) if 𝑛 < 0.

The decoder is
𝖣ℤ(𝑠) =

{

(𝑠′, 𝑛2 ) if 𝑛 ≡ 0 (mod 2)
(𝑠′,− 𝑛+1

2 ) if 𝑛 ≡ 1 (mod 2)
if 𝖣ℕ(𝑠) = (𝑠′, 𝑛).

C.2.5 Bytestrings
Bytestrings are encoded by dividing them into nonempty blocks of up to 255 bytes and emitting each block
in sequence. Each block is preceded by a single unsigned byte containing its length, and the end of the
encoding is marked by a zero-length block (so the empty bytestring is encoded just as a zero-length block).
Before emitting a bytestring, the preceding output is padded so that its length (in bits) is a multiple of 8;
if this is already the case a single padding byte is still added; this ensures that contents of the bytestring
are aligned to byte boundaries in the output.

Recall that 𝔹 denotes the set of 8-bit bytes, {0, 1,… , 255}. For specification purposes we may identify
the set of bytestrings with the set 𝔹∗ of (possibly empty) lists of elements of 𝔹. We denote by 𝐶 the set
of bytestring chunks of nonempty bytestrings of length at most 255: 𝐶 = {[𝑏1,… , 𝑏𝑛] ∶ 𝑏𝑖 ∈ 𝔹, 1 ≤ 𝑛 ≤
255}, and define a function 𝐸𝐶 ∶ 𝐶 → 𝖻∗ by

𝐸𝐶 ([𝑏1,… , 𝑏𝑛]) = 𝖤8(𝑛) ⋅ 𝖤8(𝑏1) ⋅ ⋯ ⋅ 𝖤8(𝑏𝑛).

We define an encoder 𝖤𝐶∗ for lists of chunks by
𝖤𝐶∗ (𝑠, [𝑐1,… , 𝑐𝑛]) = 𝑠 ⋅ 𝐸𝐶 (𝑐1) ⋅ ⋯ ⋅ 𝐸𝐶 (𝑐𝑛) ⋅ 𝟶𝟶𝟶𝟶𝟶𝟶𝟶𝟶.

Note that each 𝑐𝑖 is required to be nonempty but that we allow the case 𝑛 = 0, so that an empty list of
chunks encodes as 𝟶𝟶𝟶𝟶𝟶𝟶𝟶𝟶.
To encode a bytestring we decompose it into a list 𝐿 of chunks and then apply 𝖤𝐶∗ to 𝐿. However, there
will usually be many ways to decompose a given bytestring 𝑎 into chunks. For definiteness we recommend
(but do not demand) that 𝑎 is decomposed into a sequence of chunks of length 255 possibly followed by
a smaller chunk. Formally, suppose that 𝑎 = [𝑎1,… , 𝑎255𝑘+𝑟] ∈ 𝔹∗∖{𝜖} where 𝑘 ≥ 0 and 0 ≤ 𝑟 ≤ 254.
We define the canonical 256-byte decomposition �̃� of 𝑎 to be

�̃� = [[𝑎1,… , 𝑎255], [𝑎256,… , 𝑎510],…[𝑎255(𝑘−1)+1,… , 𝑎255𝑘]] ∈ 𝐶∗

if 𝑟 = 0 and
�̃� = [[𝑎1,… , 𝑎255], [𝑎256,… , 𝑎510],…[𝑎255(𝑘−1)+1,… , 𝑎255𝑘], [𝑎255𝑘+1,… , 𝑎255𝑘+𝑟]] ∈ 𝐶∗

if 𝑟 > 0.
For the empty bytestring we define

𝜖 = [].

Given all of the above, we define the canonical encoding function 𝖤𝔹∗ for bytestrings to be
𝖤𝔹∗ (𝑠, 𝑎) = 𝐸𝐶∗ (𝗉𝖺𝖽(𝑠), �̃�).
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Non-canonical encodings can be obtained by replacing �̃�with any other decomposition of 𝑎 into nonempty
chunks, and the decoder below will accept these as well.
To define a decoder for bytestrings we first define a decoder 𝖣𝐶 for bytestring chunks:

𝖣𝐶 (𝑠) = 𝖣(𝑛)
𝐶 (𝑠′, []) if 𝖣8(𝑠) = (𝑠′, 𝑛)

where
𝖣(𝑛)
𝐶 (𝑠, 𝑙) =

{

(𝑠, 𝑙) if 𝑛 = 0
𝖣(𝑛−1)
𝐶 (𝑠′, 𝑙 ⋅ 𝑥) if 𝑛 > 0 and 𝖣8(𝑠) = (𝑠′, 𝑥).

Now we define

𝖣𝐶∗ (𝑠) =

{

(𝑠′, []) if 𝐷𝐶 (𝑠) = (𝑠′, [])
(𝑠′′, 𝑥 ⋅ 𝑙) if 𝖣𝐶 (𝑠) = (𝑠′, 𝑥) with 𝑥 ≠ [] and 𝖣𝐶∗ (𝑠′) = (𝑠′′, 𝑙).

The notation is slightly misleading here: 𝖣𝐶∗ does not decode to a list of bytestring chunks, but to a single
bytestring. We could alternatively decode to a list of bytestrings and then concatenate them later, but this
would have the same overall effect.
Finally, we define the decoder for bytestrings by

𝖣𝔹∗ (𝑠) = 𝖣𝐶∗ (𝗎𝗇𝗉𝖺𝖽(𝑠)).

C.2.6 Strings
We have defined values of the string type to be sequences of Unicode characters. As mentioned earlier
we do not specify any particular internal representation of Unicode characters, but for serialisation we use
the UTF-8 representation to convert between strings and bytestrings and then use the bytestring encoder
and decoder:

𝖤𝕌∗ (𝑠, 𝑢) = 𝖤𝔹∗ (𝑠, 𝗎𝗍𝖿𝟪(𝑢))

𝖣𝕌∗ (𝑠) = (𝑠′, 𝗎𝗍𝖿𝟪−1(𝑎)) if 𝖣𝔹∗ (𝑠) = (𝑠′, 𝑎)

where 𝗎𝗍𝖿𝟪 and 𝗎𝗍𝖿𝟪−1 are the UTF8 encoding and decoding functions mentioned in Section 4.3.1. Recall
that 𝗎𝗍𝖿𝟪−1 is partial (not all bytestrings represent valid Unicode sequences), so 𝖣𝕌∗ may fail if the input
is invalid.

C.3 Encoding and decoding Plutus Core
C.3.1 Programs
A program is encoded by encoding the three components of the version number in sequence then encoding
the body, and possibly adding some padding to ensure that the total number of bits in the output is a
multiple of 8 (and hence the output can be viewed as a bytestring).

𝖤𝗉𝗋𝗈𝗀𝗋𝖺𝗆((program 𝑎.𝑏.𝑐 𝑡)) = 𝗉𝖺𝖽(𝖤𝗍𝖾𝗋𝗆(𝖤ℕ(𝖤ℕ(𝖤ℕ(𝜖, 𝑎), 𝑏), 𝑐), 𝑡)).
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The decoding process is the inverse of the encoding process: three natural numbers are read to obtain the
version number and then the body is decoded. After this we discard any padding in the remaining input
and check that all of the input has been consumed.

𝖣𝗉𝗋𝗈𝗀𝗋𝖺𝗆(𝑠) = (program 𝑎.𝑏.𝑐 𝑡)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

if 𝖣ℕ(𝑠) = (𝑠′, 𝑎)
and 𝖣ℕ(𝑠′) = (𝑠′′, 𝑏)
and 𝖣ℕ(𝑠′′) = (𝑠′′′, 𝑐)
and 𝖣𝗍𝖾𝗋𝗆(𝑠′′′) = (𝑟, 𝑡)
and 𝗎𝗇𝗉𝖺𝖽(𝑟) = 𝜖.

C.3.2 Terms
Plutus Core terms are encoded by emitting a 4-bit tag identifying the type of the term (see Table C.1;
recall that [] denotes application) then emitting the encodings for any subterms. We currently only use
ten of the sixteen available tags: the remainder are reserved for potential future expansion.

Term type Binary Decimal
Variable 𝟶𝟶𝟶𝟶 0
delay 𝟶𝟶𝟶𝟷 1
lam 𝟶𝟶𝟷𝟶 2
[] 𝟶𝟶𝟷𝟷 3
const 𝟶𝟷𝟶𝟶 4
force 𝟶𝟷𝟶𝟷 5
error 𝟶𝟷𝟷𝟶 6
builtin 𝟶𝟷𝟷𝟷 7
constr 𝟷𝟶𝟶𝟶 8
case 𝟷𝟶𝟶𝟷 9

Table C.1: Term tags

The encoder for terms is given below: it refers to other encoders (for names, types, and constants) which
will be defined later.

𝖤𝗍𝖾𝗋𝗆(𝑠, 𝑥) = 𝖤𝗇𝖺𝗆𝖾(𝑠 ⋅ 𝟶𝟶𝟶𝟶, 𝑥)
𝖤𝗍𝖾𝗋𝗆(𝑠, (delay 𝑡)) = 𝖤𝗍𝖾𝗋𝗆(𝑠 ⋅ 𝟶𝟶𝟶𝟷, 𝑡)
𝖤𝗍𝖾𝗋𝗆(𝑠, (lam 𝑥 𝑡)) = 𝖤𝗍𝖾𝗋𝗆(𝖤𝜆𝗏𝖺𝗋(𝑠 ⋅ 𝟶𝟶𝟷𝟶, 𝑥), 𝑡)
𝖤𝗍𝖾𝗋𝗆(𝑠, [𝑡1 𝑡2]) = 𝖤𝗍𝖾𝗋𝗆(𝖤𝗍𝖾𝗋𝗆(𝑠 ⋅ 𝟶𝟶𝟷𝟷, 𝑡1), 𝑡2)
𝖤𝗍𝖾𝗋𝗆(𝑠, (const 𝑡𝑛 𝑐)) = 𝖤𝑡𝑛𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍(𝖤𝗍𝗒𝗉𝖾(𝑠 ⋅ 𝟶𝟷𝟶𝟶,T), 𝑐)
𝖤𝗍𝖾𝗋𝗆(𝑠, (force 𝑡)) = 𝖤𝗍𝖾𝗋𝗆(𝑠 ⋅ 𝟶𝟷𝟶𝟷, 𝑡)
𝖤𝗍𝖾𝗋𝗆(𝑠, (error)) = 𝑠 ⋅ 𝟶𝟷𝟷𝟶
𝖤𝗍𝖾𝗋𝗆(𝑠, (builtin 𝑏)) = 𝖤𝖻𝗎𝗂𝗅𝗍𝗂𝗇(𝑠 ⋅ 𝟶𝟷𝟷𝟷, 𝑏)

𝖤𝗍𝖾𝗋𝗆(𝑠, (constr 𝑖 𝑙)) = ⃖⃗𝖤𝗍𝖾𝗋𝗆(𝖤64(𝑠 ⋅ 𝟷𝟶𝟶𝟶, 𝑖), 𝑙)

𝖤𝗍𝖾𝗋𝗆(𝑠, (case 𝑢 𝑙)) = ⃖⃗𝖤𝗍𝖾𝗋𝗆(𝖤𝗍𝖾𝗋𝗆(𝑠 ⋅ 𝟷𝟶𝟶𝟷, 𝑢), 𝑙)
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The decoder for terms is given below. To simplify the definition we use some pattern-matching syntax for
inputs to decoders: for example the argument 𝟶𝟷𝟶𝟷 ⋅ 𝑠 indicates that when the input is a string beginning
with 𝟶𝟷𝟶𝟷 the definition after the = sign should be used (and the remainder of the input is available in 𝑠
there). If the input is not long enough to permit the indicated decomposition then the decoder fails. The
decoder also fails if the input begins with a prefix which is not listed; that does not happen here, but does
in some later decoders.

𝖣𝗍𝖾𝗋𝗆(𝟶𝟶𝟶𝟶 ⋅ 𝑠) = (𝑠′, 𝑥) if 𝖣𝗇𝖺𝗆𝖾(𝑠) = (𝑠′, 𝑥)
𝖣𝗍𝖾𝗋𝗆(𝟶𝟶𝟶𝟷 ⋅ 𝑠) = (𝑠′, (delay 𝑡)) if 𝖣𝗍𝖾𝗋𝗆(𝑠) = (𝑠′, 𝑡)
𝖣𝗍𝖾𝗋𝗆(𝟶𝟶𝟷𝟶 ⋅ 𝑠) = (𝑠′′, (lam 𝑥 𝑡)) if 𝖣𝜆𝗏𝖺𝗋(𝑠) = (𝑠′, 𝑥) and 𝖣𝗍𝖾𝗋𝗆(𝑠′) = (𝑠′′, 𝑡)
𝖣𝗍𝖾𝗋𝗆(𝟶𝟶𝟷𝟷 ⋅ 𝑠) = (𝑠′′, [𝑡1 𝑡2]) if 𝖣𝗍𝖾𝗋𝗆(𝑠) = (𝑠′, 𝑡1) and 𝖣𝗍𝖾𝗋𝗆(𝑠′) = (𝑠′′, 𝑡2)

𝖣𝗍𝖾𝗋𝗆(𝟶𝟷𝟶𝟶 ⋅ 𝑠) = (𝑠′′, (const 𝑡𝑛 𝑐)) if 𝖣𝗍𝗒𝗉𝖾(𝑠) = (𝑠′,T) and 𝖣T
𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍(𝑠

′) = (𝑠′′, 𝑐)

𝖣𝗍𝖾𝗋𝗆(𝟶𝟷𝟶𝟷 ⋅ 𝑠) = (𝑠′, (force 𝑡)) if 𝖣𝗍𝖾𝗋𝗆(𝑠) = (𝑠′, 𝑡)
𝖣𝗍𝖾𝗋𝗆(𝟶𝟷𝟷𝟶 ⋅ 𝑠) = (𝑠, (error))
𝖣𝗍𝖾𝗋𝗆(𝟶𝟷𝟷𝟷 ⋅ 𝑠) = (𝑠′, 𝑏) if 𝖣𝖻𝗎𝗂𝗅𝗍𝗂𝗇(𝑠) = (𝑠′, 𝑏)

𝖣𝗍𝖾𝗋𝗆(𝟷𝟶𝟶𝟶 ⋅ 𝑠) = (𝑠′, (constr 𝑖 𝑙)) if 𝖣64(𝑠) = (𝑠′, 𝑖) and ⃖⃖⃗𝖣𝗍𝖾𝗋𝗆(𝑠′) = (𝑠′′, 𝑙)

𝖣𝗍𝖾𝗋𝗆(𝟷𝟶𝟶𝟷 ⋅ 𝑠) = (𝑠′, (case 𝑢 𝑙)) if 𝖣𝗍𝖾𝗋𝗆(𝑠) = (𝑠′, 𝑢) and ⃖⃖⃗𝖣𝗍𝖾𝗋𝗆(𝑠′) = (𝑠′′, 𝑙)

NOTE. The decoder 𝖣𝗍𝖾𝗋𝗆 should fail if we are decoding a program with a version less than 1.1.0 and
an input of the form 𝟷𝟶𝟶𝟶 ⋅ 𝑠 or 𝟷𝟶𝟶𝟷 ⋅ 𝑠 is encountered.

C.3.3 Built-in types
Constants from built-in types are essentially encoded by emitting a sequence of 4-bit tags representing
the constant’s type and then emitting the encoding of the constant itself. However the encoding of types
is somewhat complex because it has to be able to deal with type operators such as 𝚕𝚒𝚜𝚝 and 𝚙𝚊𝚒𝚛. The
tags are given in Table C.2: they include tags for the basic types together with a tag for a type application
operator.

Type Binary Decimal
𝚒𝚗𝚝𝚎𝚐𝚎𝚛 𝟶𝟶𝟶𝟶 0
𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐 𝟶𝟶𝟶𝟷 1
𝚜𝚝𝚛𝚒𝚗𝚐 𝟶𝟶𝟷𝟶 2
𝚞𝚗𝚒𝚝 𝟶𝟶𝟷𝟷 3
𝚋𝚘𝚘𝚕 𝟶𝟷𝟶𝟶 4
𝚕𝚒𝚜𝚝 𝟶𝟷𝟶𝟷 5
𝚙𝚊𝚒𝚛 𝟶𝟷𝟷𝟶 6
(type application) 𝟶𝟷𝟷𝟷 7
𝚍𝚊𝚝𝚊 𝟷𝟶𝟶𝟶 8
𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟷_𝚎𝚕𝚎𝚖𝚎𝚗𝚝 𝟷𝟶𝟶𝟷 9
𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟸_𝚎𝚕𝚎𝚖𝚎𝚗𝚝 𝟷𝟶𝟷𝟶 10
𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙼𝚕𝚁𝚎𝚜𝚞𝚕𝚝 𝟷𝟶𝟷𝟷 11

Table C.2: Type tags
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We define auxiliary functions 𝖾𝗍𝗒𝗉𝖾 ∶ U → ℕ∗ and 𝖽𝗍𝗒𝗉𝖾 ∶ ℕ∗ ⇀ ℕ∗ × U (𝖽𝗍𝗒𝗉𝖾 is partial and U denotes
the universe of types defined in Sections 4.3.1, 4.3.2, and 4.3.3).

𝖾𝗍𝗒𝗉𝖾(𝚒𝚗𝚝𝚎𝚐𝚎𝚛) = [0]

𝖾𝗍𝗒𝗉𝖾(𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐) = [1]

𝖾𝗍𝗒𝗉𝖾(𝚜𝚝𝚛𝚒𝚗𝚐) = [2]

𝖾𝗍𝗒𝗉𝖾(𝚞𝚗𝚒𝚝) = [3]

𝖾𝗍𝗒𝗉𝖾(𝚋𝚘𝚘𝚕) = [4]

𝖾𝗍𝗒𝗉𝖾(𝚕𝚒𝚜𝚝 (𝑡)) = [7, 5] ⋅ 𝖾𝗍𝗒𝗉𝖾(𝑡)

𝖾𝗍𝗒𝗉𝖾(𝚙𝚊𝚒𝚛 (𝑡1, 𝑡2)) = [7, 7, 6] ⋅ 𝖾𝗍𝗒𝗉𝖾(𝑡1) ⋅ 𝖾𝗍𝗒𝗉𝖾(𝑡2)

𝖾𝗍𝗒𝗉𝖾(𝚍𝚊𝚝𝚊) = [8].

𝖽𝗍𝗒𝗉𝖾(0 ⋅ 𝑙) = (𝑙, 𝚒𝚗𝚝𝚎𝚐𝚎𝚛)

𝖽𝗍𝗒𝗉𝖾(1 ⋅ 𝑙) = (𝑙, 𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐)

𝖽𝗍𝗒𝗉𝖾(2 ⋅ 𝑙) = (𝑙, 𝚜𝚝𝚛𝚒𝚗𝚐))

𝖽𝗍𝗒𝗉𝖾(3 ⋅ 𝑙) = (𝑙, 𝚞𝚗𝚒𝚝)

𝖽𝗍𝗒𝗉𝖾(4 ⋅ 𝑙) = (𝑙, 𝚋𝚘𝚘𝚕)

𝖽𝗍𝗒𝗉𝖾([7, 5] ⋅ 𝑙) = (𝑙′, 𝚕𝚒𝚜𝚝 (𝑡)) if 𝖽𝗍𝗒𝗉𝖾(𝑙) = (𝑙′, 𝑡)

𝖽𝗍𝗒𝗉𝖾([7, 7, 6] ⋅ 𝑙) = (𝑙′′, 𝚙𝚊𝚒𝚛 (𝑡1, 𝑡2))

{

if 𝖽𝗍𝗒𝗉𝖾(𝑙) = (𝑙′, 𝑡1)
and 𝖽𝗍𝗒𝗉𝖾(𝑙′) = (𝑙′′, 𝑡2)

𝖽𝗍𝗒𝗉𝖾(8 ⋅ 𝑙) = (𝑙, 𝚍𝚊𝚝𝚊).

The encoder and decoder for types is obtained by combining 𝖾𝗍𝗒𝗉𝖾 and 𝖽𝗍𝗒𝗉𝖾 with ⃖⃗𝖤4 and ⃖⃖⃗𝖣4, the encoder
and decoder for lists of four-bit integers (see Section C.2).

𝖤𝗍𝗒𝗉𝖾(𝑠, 𝑡) = ⃖⃗𝖤4(𝑠, 𝖾𝗍𝗒𝗉𝖾(𝑡))

𝖣𝗍𝗒𝗉𝖾(𝑠) = (𝑠′, 𝑡) if ⃖⃖⃗𝖣4(𝑠) = (𝑠′, 𝑙) and 𝖽𝗍𝗒𝗉𝖾(𝑙) = ([], 𝑡).

C.3.4 Constants
Values of built-in types can mostly be encoded quite simply by using encoders already defined. Note that
the unit value (con unit ()) does not have an explicit encoding: the type has only one possible value,
so there is no need to use any space to serialise it.

The 𝚍𝚊𝚝𝚊 type is encoded by converting to a bytestring using the CBOR encoder E𝚍𝚊𝚝𝚊 described in
Appendix B and then using 𝖤𝔹∗ . The decoding process is the opposite of this: a bytestring is obtained
using 𝖣𝔹∗ and this is then decoded from CBOR using D𝚍𝚊𝚝𝚊 to obtain a 𝚍𝚊𝚝𝚊 object.

We do not provide serialisation and deserialisation for constants of type 𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟷_𝚎𝚕𝚎𝚖𝚎𝚗𝚝,
𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝙶𝟸_𝚎𝚕𝚎𝚖𝚎𝚗𝚝, or 𝚋𝚕𝚜𝟷𝟸_𝟹𝟾𝟷_𝚖𝚕𝚛𝚎𝚜𝚞𝚕𝚝. We have specified tags for these types, but if one
of these tags is encountered during deserialisation then deserialisation fails and any subsequent input is
ignored. Note however that constants of the first two types can be serialised by using the compression
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functions defined in Section 4.3.4.3 and serialising the resulting bytestrings. Decoding can similarly be
performed indirectly by using bls12_381_G1_uncompress and bls12_381_G2_uncompress on byte-
string constants during program execution.

𝖤
𝚒𝚗𝚝𝚎𝚐𝚎𝚛

𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍 (𝑠, 𝑛) = 𝖤ℤ(𝑠, 𝑛)

𝖤
𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐

𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍 (𝑠, 𝑎) = 𝖤𝔹∗ (𝑠, 𝑎)

𝖤
𝚜𝚝𝚛𝚒𝚗𝚐

𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍(𝑠, 𝑡) = 𝖤𝕌∗ (𝑠, 𝑡)
𝖤𝚞𝚗𝚒𝚝𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍(𝑠, 𝑐) = 𝑠

𝖤𝚋𝚘𝚘𝚕𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍(𝑠, False) = 𝑠 ⋅ 𝟶

𝖤𝚋𝚘𝚘𝚕𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍(𝑠, True) = 𝑠 ⋅ 𝟷

𝖤𝚕𝚒𝚜𝚝 (T)𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍 (𝑠, 𝑙) = ⃖⃗𝖤T
𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍(𝑠, 𝑙)

𝖤
𝚙𝚊𝚒𝚛 (T1,T2)
𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍 (𝑠, (𝑐1, 𝑐2)) = 𝖤

T2
𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍(𝖤

T1
𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍(𝑠, 𝑐1), 𝑐2)

𝖤𝚍𝚊𝚝𝚊𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍(𝑠, 𝑑) = 𝖤𝔹∗ (𝑠, E𝚍𝚊𝚝𝚊(𝑑))

𝖣
𝚒𝚗𝚝𝚎𝚐𝚎𝚛

𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍 (𝑠) = 𝖣ℤ(𝑠)

𝖣
𝚋𝚢𝚝𝚎𝚜𝚝𝚛𝚒𝚗𝚐

𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍 (𝑠) = 𝖣𝔹∗ (𝑠)

𝖣
𝚜𝚝𝚛𝚒𝚗𝚐

𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍(𝑠) = 𝖣𝕌∗ (𝑠)
𝖣𝚞𝚗𝚒𝚝
𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍(𝑠) = 𝑠

𝖣𝚋𝚘𝚘𝚕
𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍(𝟶 ⋅ 𝑠) = (𝑠, False)

𝖣𝚋𝚘𝚘𝚕
𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍(𝟷 ⋅ 𝑠) = (𝑠, True)

𝖣𝚕𝚒𝚜𝚝 (T)
𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍 (𝑠) = ⃖⃖⃗𝖣T

𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍(𝑠, 𝑙)

𝖣
𝚙𝚊𝚒𝚛 (T1,T2)
𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍 (𝑠) = (𝑠′′, (𝑐1, 𝑐2))

{

if 𝖣
T1
𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍(𝑠) = (𝑠′, 𝑐1)

and 𝖣
T2
𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍(𝑠

′) = (𝑠′′, 𝑐2)

𝖣𝚍𝚊𝚝𝚊
𝖼𝗈𝗇𝗌𝗍𝖺𝗇𝗍(𝑠) = (𝑠′, 𝑑) if 𝖣𝔹∗(𝑠) = (𝑠′, 𝑡) and D𝚍𝚊𝚝𝚊(𝑡) = (𝑡′, 𝑑) for some 𝑡′

C.3.5 Built-in functions
Built-in functions are represented by seven-bit integer tags and encoded and decoded using 𝖤7 and 𝖣7.
The tags are specified in Tables C.3–C.7. We assume that there are (partial) functions 𝗍𝖺𝗀 and 𝗍𝖺𝗀−1 which
convert back and forth between builtin names and their tags.

𝖤𝖻𝗎𝗂𝗅𝗍𝗂𝗇(𝑠, 𝑏) = 𝖤7(𝑠, 𝗍𝖺𝗀(𝑏))

𝖣𝖻𝗎𝗂𝗅𝗍𝗂𝗇(𝑠) = (𝑠′, 𝗍𝖺𝗀−1(𝑛)) if 𝖣7(𝑠) = (𝑠′, 𝑛).
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Builtin Binary Decimal Builtin Binary Decimal
addInteger 𝟶𝟶𝟶𝟶𝟶𝟶𝟶 0 ifThenElse 𝟶𝟶𝟷𝟷𝟶𝟷𝟶 26
subtractInteger 𝟶𝟶𝟶𝟶𝟶𝟶𝟷 1 chooseUnit 𝟶𝟶𝟷𝟷𝟶𝟷𝟷 27
multiplyInteger 𝟶𝟶𝟶𝟶𝟶𝟷𝟶 2 trace 𝟶𝟶𝟷𝟷𝟷𝟶𝟶 28
divideInteger 𝟶𝟶𝟶𝟶𝟶𝟷𝟷 3 fstPair 𝟶𝟶𝟷𝟷𝟷𝟶𝟷 29
quotientInteger 𝟶𝟶𝟶𝟶𝟷𝟶𝟶 4 sndPair 𝟶𝟶𝟷𝟷𝟷𝟷𝟶 30
remainderInteger 𝟶𝟶𝟶𝟶𝟷𝟶𝟷 5 chooseList 𝟶𝟶𝟷𝟷𝟷𝟷𝟷 31
modInteger 𝟶𝟶𝟶𝟶𝟷𝟷𝟶 6 mkCons 𝟶𝟷𝟶𝟶𝟶𝟶𝟶 32
equalsInteger 𝟶𝟶𝟶𝟶𝟷𝟷𝟷 7 headList 𝟶𝟷𝟶𝟶𝟶𝟶𝟷 33
lessThanInteger 𝟶𝟶𝟶𝟷𝟶𝟶𝟶 8 tailList 𝟶𝟷𝟶𝟶𝟶𝟷𝟶 34
lessThanEqualsInteger 𝟶𝟶𝟶𝟷𝟶𝟶𝟷 9 nullList 𝟶𝟷𝟶𝟶𝟶𝟷𝟷 35
appendByteString 𝟶𝟶𝟶𝟷𝟶𝟷𝟶 10 chooseData 𝟶𝟷𝟶𝟶𝟷𝟶𝟶 36
consByteString 𝟶𝟶𝟶𝟷𝟶𝟷𝟷 11 constrData 𝟶𝟷𝟶𝟶𝟷𝟶𝟷 37
sliceByteString 𝟶𝟶𝟶𝟷𝟷𝟶𝟶 12 mapData 𝟶𝟷𝟶𝟶𝟷𝟷𝟶 38
lengthOfByteString 𝟶𝟶𝟶𝟷𝟷𝟶𝟷 13 listData 𝟶𝟷𝟶𝟶𝟷𝟷𝟷 39
indexByteString 𝟶𝟶𝟶𝟷𝟷𝟷𝟶 14 iData 𝟶𝟷𝟶𝟷𝟶𝟶𝟶 40
equalsByteString 𝟶𝟶𝟶𝟷𝟷𝟷𝟷 15 bData 𝟶𝟷𝟶𝟷𝟶𝟶𝟷 41
lessThanByteString 𝟶𝟶𝟷𝟶𝟶𝟶𝟶 16 unConstrData 𝟶𝟷𝟶𝟷𝟶𝟷𝟶 42
lessThanEqualsByteString 𝟶𝟶𝟷𝟶𝟶𝟶𝟷 17 unMapData 𝟶𝟷𝟶𝟷𝟶𝟷𝟷 43
sha2_256 𝟶𝟶𝟷𝟶𝟶𝟷𝟶 18 unListData 𝟶𝟷𝟶𝟷𝟷𝟶𝟶 44
sha3_256 𝟶𝟶𝟷𝟶𝟶𝟷𝟷 19 unIData 𝟶𝟷𝟶𝟷𝟷𝟶𝟷 45
blake2b_256 𝟶𝟶𝟷𝟶𝟷𝟶𝟶 20 unBData 𝟶𝟷𝟶𝟷𝟷𝟷𝟶 46
verifyEd25519Signature 𝟶𝟶𝟷𝟶𝟷𝟶𝟷 21 equalsData 𝟶𝟷𝟶𝟷𝟷𝟷𝟷 47
appendString 𝟶𝟶𝟷𝟶𝟷𝟷𝟶 22 mkPairData 𝟶𝟷𝟷𝟶𝟶𝟶𝟶 48
equalsString 𝟶𝟶𝟷𝟶𝟷𝟷𝟷 23 mkNilData 𝟶𝟷𝟷𝟶𝟶𝟶𝟷 49
encodeUtf8 𝟶𝟶𝟷𝟷𝟶𝟶𝟶 24 mkNilPairData 𝟶𝟷𝟷𝟶𝟶𝟷𝟶 50
decodeUtf8 𝟶𝟶𝟷𝟷𝟶𝟶𝟷 25

Table C.3: Tags for built-in functions (batch 1)

Builtin Binary Decimal
serialiseData 𝟶𝟷𝟷𝟶𝟶𝟷𝟷 51

Table C.4: Tags for built-in functions (batch 2)

Builtin Binary Decimal
verifyEcdsaSecp256k1Signature 𝟶𝟷𝟷𝟶𝟷𝟶𝟶 52
verifySchnorrSecp256k1Signature 𝟶𝟷𝟷𝟶𝟷𝟶𝟷 53

Table C.5: Tags for built-in functions (batch 3)
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Builtin Binary Decimal
bls12_381_G1_add 𝟶𝟷𝟷𝟶𝟷𝟷𝟶 54
bls12_381_G1_neg 𝟶𝟷𝟷𝟶𝟷𝟷𝟷 55
bls12_381_G1_scalarMul 𝟶𝟷𝟷𝟷𝟶𝟶𝟶 56
bls12_381_G1_equal 𝟶𝟷𝟷𝟷𝟶𝟶𝟷 57
bls12_381_G1_hashToGroup 𝟶𝟷𝟷𝟷𝟶𝟷𝟶 58
bls12_381_G1_compress 𝟶𝟷𝟷𝟷𝟶𝟷𝟷 59
bls12_381_G1_uncompress 𝟶𝟷𝟷𝟷𝟷𝟶𝟶 60
bls12_381_G2_add 𝟶𝟷𝟷𝟷𝟷𝟶𝟷 61
bls12_381_G2_neg 𝟶𝟷𝟷𝟷𝟷𝟷𝟶 62
bls12_381_G2_scalarMul 𝟶𝟷𝟷𝟷𝟷𝟷𝟷 63
bls12_381_G2_equal 𝟷𝟶𝟶𝟶𝟶𝟶𝟶 64
bls12_381_G2_hashToGroup 𝟷𝟶𝟶𝟶𝟶𝟶𝟷 65
bls12_381_G2_compress 𝟷𝟶𝟶𝟶𝟶𝟷𝟶 66
bls12_381_G2_uncompress 𝟷𝟶𝟶𝟶𝟶𝟷𝟷 67
bls12_381_millerLoop 𝟷𝟶𝟶𝟶𝟷𝟶𝟶 68
bls12_381_mulMlResult 𝟷𝟶𝟶𝟶𝟷𝟶𝟷 69
bls12_381_finalVerify 𝟷𝟶𝟶𝟶𝟷𝟷𝟶 70
keccak_256 𝟷𝟶𝟶𝟶𝟷𝟷𝟷 71
blake2b_224 𝟷𝟶𝟶𝟷𝟶𝟶𝟶 72
integerToByteString 𝟷𝟶𝟶𝟷𝟶𝟶𝟶 73
byteStringToInteger 𝟷𝟶𝟶𝟷𝟶𝟶𝟶 74

Table C.6: Tags for built-in functions (batch 4)

Builtin Binary Decimal
andByteString 𝟷𝟶𝟶𝟷𝟶𝟷𝟷 75
orByteString 𝟷𝟶𝟶𝟷𝟷𝟶𝟶 76
xorByteString 𝟷𝟶𝟶𝟷𝟷𝟶𝟷 77
complementByteString 𝟷𝟶𝟶𝟷𝟷𝟷𝟶 78
readBit 𝟷𝟶𝟶𝟷𝟷𝟷𝟷 79
writeBits 𝟷𝟶𝟷𝟶𝟶𝟶𝟶 80
replicateByte 𝟷𝟶𝟷𝟶𝟶𝟶𝟷 81
shiftByteString 𝟷𝟶𝟷𝟶𝟶𝟷𝟶 82
rotateByteString 𝟷𝟶𝟷𝟶𝟶𝟷𝟷 83
countSetBits 𝟷𝟶𝟷𝟶𝟷𝟶𝟶 84
findFirstSetBit 𝟷𝟶𝟷𝟶𝟷𝟶𝟷 85
ripemd_160 𝟷𝟶𝟷𝟶𝟷𝟷𝟶 86

Table C.7: Tags for built-in functions (batch 5)

C.3.6 Variable names
Variable names are encoded and decoded using the 𝖤𝗇𝖺𝗆𝖾 and 𝖣𝗇𝖺𝗆𝖾 functions, and variables bound in lam
expressions are encoded and decoded by the 𝖤𝜆𝗏𝖺𝗋 and 𝖣𝜆𝗏𝖺𝗋 functions.
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De Bruijn indices. We use serialised de Bruijn-indexed terms for script transmission because this makes
serialised scripts significantly smaller. Recall from Section 2.1.3 that when we want to use our syntax with
de Bruijn indices we replace names with natural numbers and the bound variable in a lam expression with
0. During serialisation the zero is ignored, and during deserialisation no input is consumed and the index
0 is always returned:

𝖤𝜆𝗏𝖺𝗋(𝑠, 𝑛) = 𝑠

𝖣𝜆𝗏𝖺𝗋(𝑠) = 0.

For variables we always use indices which are greater than zero, and our encoder and decoder for names
are given by

𝖤𝗇𝖺𝗆𝖾 = 𝖤ℕ

and
𝖣𝗇𝖺𝗆𝖾(𝑠) = (𝑠′, 𝑛) if 𝖣ℕ = (𝑠′, 𝑛) and 𝑛 > 0.

Other types of name. One can serialise code involving other types of name by providing suitable en-
coders and decoders for name. For example, for textual names one could use 𝖤𝜆𝗏𝖺𝗋 = 𝖤𝗇𝖺𝗆𝖾 = 𝖤𝕌∗ and
𝖣𝜆𝗏𝖺𝗋 = 𝖣𝗇𝖺𝗆𝖾 = 𝖣𝕌∗ . Depending on the method used to represent variable names it may also be neces-
sary to check during deserialisation the more general requirement that variables are well-scoped, but this
problem will not arise if de Bruijn indices are used.

C.4 Cardano-specific serialisation issues
C.4.1 Scope checking
To execute a Plutus Core program on the blockchain it will be necessary to deserialise it to some in-
memory representation, and during or immediately after deserialisation it should be checked that the body
of the program is a closed term (see the requirement in Section 2.1.3); if this is not the case then evaluation
should fail immediately.

C.4.2 CBOR wrapping
Plutus Core programs are not stored on the Cardano chain directly as flat bytestrings; for consistency
with other objects used on the chain, the flat bytestrings are in fact wrapped in a CBOR encoding. This
should not concern most users, but we mention it here to avoid possible confusion.

C.5 Example
Consider the program
(program 5.0.2
[
[(builtin indexByteString)(con bytestring #1a5f783625ee8c)]
(con integer 54321)

])

Suppose this is stored in index.uplc. We can convert it to flat by running
$ cabal run exec uplc convert -- -i index.uplc --of flat -o index.flat

65



The serialised program looks like this:
$ xxd -b index.flat
00000000: 00000101 00000000 00000010 00110011 01110001 11001001 ...3q.
00000006: 00010001 00000111 00011010 01011111 01111000 00110110 ..._x6
0000000c: 00100101 11101110 10001100 00000000 01001000 00111000 %...H8
00000012: 10110100 00000001 10000001

Figure C.1 shows how this encodes the original program. Sequences of bits are followed by explanatory
comments and lines beginning with # provide further commentary on preceding bit sequences.

00000101 : Final integer chunk: 0000101→ 5
00000000 : Final integer chunk: 0000000→ 0
00000010 : Final integer chunk: 0000000→ 2

# Version: 5.0.2
0011 : Term tag 3: apply
0011 : Term tag 3: apply
0111 : Term tag 7: builtin
0001110 : Builtin tag 14

# builtin indexByteString
0100 : Term tag 4: constant
1 : Start of type tag list
0001 : Type tag 1
0 : End of list

# Type tags: [1] → bytestring
001 : Padding before bytestring
00000111 : Bytestring chunk size: 7
00011010 : 0x1a
01011111 : 0x5f
01111000 : 0x78
00110110 : 0x36
00100101 : 0x25
11101110 : 0xee
10001100 : 0x8c
00000000 : Bytestring chunk size: 0 (end of list of chunks)

# con bytestring #1a5f783625ee8c
0100 : Term tag 4: constant
1 : Start of type tag list
0000 : Type tag 0
0 : End of list

# Type tags: [0] → integer
11100010 : Integer chunk 1100010 (least significant)
11010000 : Integer chunk 1010000
00000110 : Final integer chunk 0000110 (most significant)

# 0000110 ⋅ 1010000 ⋅ 1100010 → 108642 decimal
# Zigzag encoding: 108642/2 → +54321
# con integer 54321

000001 : Padding

Figure C.1: flat encoding of index.uplc
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