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1 Introduction: The Extended UTXO Model

The Cardano blockchain [Car, 2015-2019, Corduan et al., 2019] uses a variant of the Unspent
Transaction Output (UTXO) model used by Bitcoin. Transactions consume unspent outputs
(UTXOs) from previous transactions and produce new outputs which can be used as inputs to
later transactions. Unspent outputs are the liquid funds on the blockchain. Users do not have
individual accounts, but rather have a software wallet on a smartphone or PC which manages
UTXOs on the blockchain and can initiate transactions involving UTXOs owned by the user.
Every core node on the blockchain maintains a record of all of the currently unspent outputs,
the UTXO set; when outputs are spent, they are removed from the UTXO set.

This document contains a description of some extensions of the UTXO model: the main aim
of these extensions is to facilitate the implementation of smart contracts, programs which perform
automated and irrevocable transfer of funds on the blockchain, subject to certain conditions being
met. A smart contract may involve multiple transactions, and our aim is to define a transaction
model which enables the implementation of highly expressive contracts.

An important feature of our UTXO models is scripts, programs which run on the blockchain
to check the validity of transactions. In Cardano, scripts will be programs in the Plutus Core
language [TOHK, 2019]. The Extended UTXO models are largely agnostic as to the scripting
language.

1.1 Structure of the document

The papers [Zahnentferner, 2018a] and [Zahnentferner, 2018b] give a formal specification of a
basic UTXO model. See Note 2 for some background on this model.

This document proposes two extensions of the basic UTXO model (EUTXO stands for Extended
UTXO):

e EUTXO-1 (Section 3): this extends the basic UTXO model with enhanced scripting
features, allowing the implementation of complex smart contracts.

e EUTXO-2 (Section 4): this adds multicurrency features to EUTXO-1, allowing users to
define custom currencies and non-fungible tokens.

The rationale for providing two separate extensions is that (1) introducing the extensions
separately clarifies the structure of the models and makes it easier to explain the relevant design
decisions, and (2) it is possible that a particular blockchain might not need the full power of
EUTXO-2 and so could use the simpler EUTXO-1 model, perhaps with less computational
overhead.



For ease of reference we have kept exposition to a minimum in the main text. Some aspects
of the models are explained in more detail in Appendix A, with cross-references in the main text.
Further explanation and many examples are contained in the book [Briinjes and Vinogradova,
2019].

2

Notation

This section defines some basic notation. We generally follow the notation established by [Zah-
nentferner, 2018b], except that we make use of finitely-supported functions in most places that
[Zahnentferner, 2018b] use maps.

2.1

Basic types and operations

This section describes some types, notation, and conventions used in the remainder of the doc-
ument.

Types are typeset in sans serif.

B denotes the type of booleans, {false, true}.

N denotes the type of natural numbers, {0,1,2,...}.

Z denotes the type of integers, {...,—2,—1,0,1,2,...}.

We regard N as a subtype of Z and convert freely between natural numbers and non-negative
integers.

H denotes the type of bytestrings, | ;- {0, 1}%".

() denotes the empty bytestring.

A bytestring is a sequence of 8-bit bytes: the symbol H is used because bytestrings are
often presented as sequences of hexadecimal digits.

If a type M is a monoid, we use + for the monoidal operation and 0 for the unit of the
monoid.

If M is a commutative monoid, we use Y for the extension of + to a finite set of elements
of type M.

If M is a group, we use — for the group inverse operation.

This should never be ambiguous.

A record type with fields ¢q, ..., ¢, of types Ty, ..., T, is denoted by (¢1 : T1, ..., dn : Tn).

If ¢ is a value of a record type T and ¢ is the name of a field of T" then t.¢p denotes the
value of ¢ for t.

If T is a type then FinSet[T] is the type of finite sets with elements of type T.

A list [ of type List[T] is either the empty list [] or a list e :: [ with head e of type T and tail
[ of type List[T]. A list has only a finite number of elements. We denote the ith element of
a list [ by [[i] and the length of [ by [I|.

x +— f(x) denotes an anonymous function.



e A cryptographic collision-resistant hash of a value ¢ is denoted ¢#.

e For a type A which forms a total order, Interval[A] is the type of intervals over that type.
Intervals may be bounded or unbounded, and open or closed at either end. The type
Interval[A4] forms a lattice under inclusion.

2.2 Finitely-supported functions

Finitely-supported functions are a generalisation of maps to monoidal values. They always return
an answer (which will in all but finitely many cases be zero), and can be queried for the set of
non-zero points in their domain.

For two types K and V where V is a monoid, FinSup[K, V] denotes the type of finitely-
supported functions from K to V. That is, there is a function support : FinSup[K, V] — FinSet[K]
such that &k € support(f) < f(k) # 0.

Equality on finitely-supported functions is defined as pointwise equality. Similarly, if V' has
a partial order, then a partial order on finitely-supported functions is also defined pointwise.

If the type M is a monoid then we define the sum of two finitely-supported functions f, g €
FinSup[K, M| to be the function f + g € FinSup[K, M| given by

(f +9)(k) = f(k) + g(k)

Note that the type FinSup[K, M] is a monoid with this operation, and the empty function as
identity element.

If the type M is a group, then we can similarly define the inverse of a finitely-supported
function f as the function (—f) with the same support, given by

Again, FinSup[K, M] is a group with this operation.

See Note 1 for discussion of using finitely-supported functions computationally.

2.3 The Data type

We also define a type Data which can be used to pass information into scripts in a type-safe
manner: see Figure 1. The definition is given here in EBNF form, but can easily be translated
to a Haskell type, for instance.

Data =

" 7,

"B H

"Constr" N (List[Data))
"List" List[Data]
"Map" List[Data x Data]

Figure 1: The Data type

Thus values of type Data are nested sums and products built up recursively from the base types of
integers and bytestrings. This allows one to encode a large variety of first-order data structures:



for example, we could encode values of Haskell’'s Maybe Integer type using Constr 0 [] to
represent Nothing and Constr 1 [I 41] to encode Just 41.

The List and Map constructors are strictly redundant, but are included for convenience to
allow straightforward encoding of lists and records.

We assume that the scripting language has the ability to parse values of type Data, converting
them into a suitable internal representation.

3 EUTXO-1: Enhanced scripting

The EUTXO-1 model adds the following new features to the model proposed in [Zahnentferner,
2018b]:

e Every transaction has a wvalidity interval, of type Interval[SlotNumber]. A core node will
only process the transaction if the current slot number lies within the transaction’s validity
interval.

e The redeemer script of Zahnentferner [2018b] has been replaced with a redeemer object
(redeemer for short) of type Data.

e Each unspent output now has an object of type Data associated with it: we call this the
output’s datum (or occasionally datum object) (see Note 4). Only the hash datumHash
of the datum is stored in the output: the full value must be provided when the output is
spent, much like the validator.

e Validator scripts make use of information about the pending transaction (ie, the transaction
which is just about to take place, assuming that validation succeeds). This information
is contained in a structure which we call Context (see Section 3.1.2 for its definition). We
may refer to this information as the validation context in cases where ambiguity may arise.

e Validation of an output is performed by running the validator with three inputs:

1. the datum,
2. the redeemer,

3. the Context information, encoded as Data.

3.1 A Formal Description of the EUTXO-1 Model

In this section we give a formal description of the EUTXO-1 model. The description is given in
a straightforward set-theoretic form, which (a) admits an almost direct translation into Haskell,
and (b) should easily be amenable to mechanical formalisation. This will potentially allow us to
argue formally about smart contracts and to develop tools for automatic contract analysis.

The definitions in this section are essentially the definitions of UTXO-based cryptocurrencies
with scripts from [Zahnentferner, 2018b], except that we have added the new features mentioned
above (the validity interval, the datum and the Context structure), changed the type of the
redeemer from Script to Data, and used finitely-supported functions in place of maps.

Figure 2 lists the types and operations used in the the basic EUTXO model. Some of these
are defined, the others must be provided by the ledger.



LEDGER PRIMITIVES

Quantity

SlotNumber

Address

DataHash

Txld

txld : Tx — TxId

lookupTx : Ledger x Txld — Tx
Script

scriptAddr : Script — Address
dataHash : Data — DataHash
[-] : Script — Data x --- x Data — B

DEFINED TYPES
Output

OutputRef

Input

Tx

Ledger

an amount of currency

a slot number

the “address” of a script in the blockchain
the hash of an object of type Data

the identifier of a transaction

a function computing the identifier of a transaction
a function retrieving a transaction via its identifier

the (opaque) type of scripts

the address of a script

the hash of a data object

application of a script to its arguments

(addr : Address,
value : Quantity,
datumHash : DataHash)

(id : TxId, index : Int)

(outputRef : OutputRef,
validator : Script,
datum : Data,
redeemer : Data)

(inputs : FinSet[Input],

outputs : List[Output],

validityInterval : Interval[SlotNumber],
datum Witnesses : FinSup[DataHash, Data],
fee : Quantity,

forge : Quantity)

List[Tx]

Figure 2: Primitives and basic types for the EUTXO-1 model

3.1.1 Remarks

ETUXO-1 on Cardano. The Cardano implementation of EUTXO-1 uses the primitives given

in Figure 3.



Quantity = Z
SlotNumber = N
Address = H
DataHash = H
Txld = H

txld: Tx — Txld = ¢ t#

Script a Plutus Core program
scriptAddr : Script — Address = s+ s7
[-] : Script — Data x --- x Data —» B running the Plutus Core interpreter with a

script and a number of data objects as input

Figure 3: Cardano primitives for the EUTXO-1 model

Transaction identifiers. We assume that each transaction has a unique identifier (in Cardano,
the hash of a Tx object) and that a transaction can be efficiently retrieved from a ledger using
the lookupTx function.

Inputs and outputs. Note that a transaction has a Set of inputs but a List of outputs. See
Note 3 for a discussion of why this is.

Validator addresses in outputs. The addr field of an output should contain the address of
the validator script for that output: this requirement is enforced in Rule 8 of Figure 6 below.

Scripts and hashes. Note that datum objects and validators are provided as parts of trans-
action inputs, even though they are conceptually part of the output being spent. The reasons
for this are explained in Note 6.

Applying scripts A script s may expect some number n of datum objects as arguments (the
number n depending on the type of the script). The result of running the script with the datum
objects di, ..., d, as arguments is denoted by [s](d1,...,d,). As mentioned at the start of this
section, validator scripts take three arguments.

Datum witnesses. The transaction may include the full value of the datum for each output
that it creates. See Note 7 for more discussion.

Fees. Users are charged a fee for the on-chain storage and execution costs of a transaction, and
this is included in the EUTXO models. The details are not important for the purposes of the
models, but see Note 5 for some more discussion.

Special types of transaction. In a practical implementation it might be useful to include
special cases for common transaction types such as pay-to-pukbey transactions in order to in-
crease efficiency and decrease storage requirements (and hence reduce fees). These have been
omitted from this model because it subsumes all of the other transaction types we’re likely to
encounter, and also because it’s difficult to give a definitive list of such special cases.



Ledger structure. We model a ledger as a simple list of transactions: a real blockchain ledger
will be more complex than this, but the only property that we really require is that transactions
in the ledger have some kind of address which allows them to be uniquely identified and retrieved.

3.1.2 The Context type

Recall from the introduction to Section 3 that when a transaction input is being validated, the
validator is supplied with an object of type Context which contains information about the pending
transaction. The Context type for the current version of EUTXO-1 is defined in Figure 4, along
with some related types.

Outputinfo = (walue : Quantity,
validatorHash : Address,
datumHash : DataHash)

Inputinfo = (outputRef : OutputRef,
validatorHash : Address,
datumHash : DataHash,
redeemerHash : DataHash,
value : Quantity)

Context = (inputInfo : List[Inputinfo],
thisInput : N,
outputInfo : List[Outputlnfo],
validityInterval : Interval[SlotNumber],
datum Witnesses : FinSup[DataHash, Data],
fee : Quantity,
forge : Quantity)

mkContext : Tx x Input x Ledger — Context summarises a transaction in the context
of an input and a ledger state

toData : Context — Data encodes a Context as Data

Figure 4: The Context type for the EUTXO-1 model

3.2 Remarks

The contents of Context. The Context type is essentially a summary of the information
contained in the Tx type in Figure 2. The fee, forge, and wvalidityInterval fields are copied
directly from the pending transaction. The outputinfo field contains information about the
outputs which will be produced if the pending transaction validates successfully: it contains only
the address of the relevant validator, and the hash of the datum.! The inputInfo field contains
information about the inputs to the pending transaction, but provides only the hashes of the

1See Note 8 for further explanation.



validators and redeemers for the inputs. The thisInput field is an index pointing to the element
of inputinfo relating to the input currently undergoing validation.

Defining mkContext and toData. Assuming we have an appropriate hashing function, it is
straightforward to define mkContext. For the implementation of toData, note that the inputs
field is a FinSet[] in Tx, but a List[] in Context. Therefore toData has to introduce an ordering of
the transaction inputs. Contract authors cannot make any assumptions about this ordering and
therefore should ensure that their scripts pass or fail regardless of what particular permutation
of transaction inputs they are presented with.

Apart from that, the function toData is implementation-dependent and we will not discuss it
further.

Determinism. The information provided in the Context structure is sufficiently limited that
the validation process becomes deterministic, which has important implications for fee calcula-
tions. See Note 9 for further discussion.

3.3 Validity of EUTXO-1 transactions

A number of conditions must be satisfied in order for a transaction ¢ to be considered valid with
respect to a ledger [.
Figure 5 defines some auxiliary functions used in validation.

unspentTxOutputs : Tx — FinSet[OutputRef]

unspentTxOutputs(t) = {(txld(¢),1),..., (txld(id), |t.outputs|)}
unspentOutputs : Ledger — FinSet[OutputRef]

unspentOutputs([]) = {}

unspentOutputs(? :: 1) = (unspentOutputs(l) \ t.inputs) U unspentTxOutputs(t)

getSpentOutput : Input x Ledger — Output
getSpentOutput(i,l) = lookupTx(l, i.outputRef .id).outputs[i.outputRef .index]

Figure 5: Auxiliary functions for transaction validation

It is perhaps not immediately obvious that the unspentOutputs function only yields a finite
set of outputs: however, this can be proved by induction on the slot number, using the facts that
the initial ledger is empty and that each transaction only produces a finite number of outputs.

Note also that getSpentOutput uses the lookupTx function, which can of course fail if the
ledger contains no transaction with the relevant identifier; however we only use getSpentOutput
during transaction validation, and our validity rules ensure that in that case transaction lookup
will always succeed: see Note 10.

We can now define what it means for a transaction t of type Tx to be valid for a ledger !
during the slot currentSlot: see Figure 6. Our definition combines Definitions 6 and 14 from
[Zahnentferner, 2018b], differing from the latter in Rule 7.



1. The current slot is within the validity interval

currentSlot € t.validityInterval

2. All outputs have non-negative values

For all o € t.outputs, o.value >0

3. All inputs refer to unspent outputs
{i.outputRef : i € t.inputs} C unspentOutputs(l).

4. Forging

A transaction with a non-zero forge field is only valid if the ledger [ is empty (that is, if it
is the initial transaction).

5. Value is preserved

t.forge + Z getSpentOutput(i, 1).value = t.fee + Z o.value

ict.inputs o€t.outputs
6. No output is double spent
If 41,49 € t.inputs and iq.outputRef = is.outputRef then i1 = is.
7. All inputs validate
For all i € t.inputs, [i.validator](i.datum, i.redeemer, toData(mkContext(t,,1))) = true.
8. Validator scripts match output addresses

For all ¢ € t.inputs, scriptAddr(i.validator) = getSpentOutput(i,l).addr

9. Datum objects match output hashes

For all i € t.inputs, dataHash(i.datum) = getSpentOutput(i,!).datumHash

Figure 6: Validity of a transaction ¢ in the EUTXO-1 model

We say that a ledger [ is walid if either [ is empty or [ is of the form ¢ :: I’ with I’ valid and ¢
valid for 1.

In practice, validity imposes a limit on the sizes of the wvalidator Script, the redeemer and
datum Data fields, and the result of toData. The validation of a single transaction must take
place within one slot, so the evaluation of [-] cannot take longer than one slot.



4 EUTXO-2: multicurrency support and non-fungible to-
kens

We now extend the EUTXO-1 model further by introducing features which allow, among other
things, the implementation of new currencies and non-fungible tokens (NFTs).

Multiple currencies. The EUTXO-2 model allows an unlimited number of currencies. Each
custom currency has a unique identifier and a monetary policy script which may be used to limit
the way in which the currency is used (for example, by only allowing specified users to create
units of the currency).

NFTs. A non-fungible token (NFT) is a unique object which can be transferred to another
user, but not duplicated. NFTs have proven useful in a number of blockchain applications
(see [Ethereum, 2017] for example); for example, they can represent ownership of some object in
a game. We can implement NFTs as custom currencies whose supply is limited to a single coin.

4.1 The definition of EUTXO-2

In order to support these extensions, we introduce several new types. Custom currencies are
represented by unique currency identifiers and each currency has a number of tokens which
partition each custom currency into a number of sub-currencies. The basic idea is that ordinary
currencies have a single token whose sub-currency has an unlimited supply and NFTs have a
number of tokens with the sub-currency for each token limited to a supply of one.

The changes to the basic EUTXO-1 types are quite simple: see Figure 7. We change the
type of the value field in the Output type to be Quantities, representing values of all currencies.
We also change the type of the forge field on transactions to Quantities, to allow the creation
and destruction of funds in all currencies; the supply of a currency can be reduced by forging
a negative amount of that currency, as in EUTXO-1. In addition, transactions now have a set
forgeScripts of monetary policy scripts, each of which takes a single Data argument summarising
the current transaction; we assume that there is a function toTxData : Tx — Data which creates
such objects.

10



LEDGER PRIMITIVES

Token a type consisting of identifiers for individual tokens

toTxData : Tx — Data encode a transaction as Data

DEFINED TYPES

Currencyld = Address (an identifier for a custom currency)
Quantities = FinSup[Currencyld, FinSup[Token, Quantity]]
Output, = (addr : Address,

value : Quantities
datumHash : DataHash)

OutputRef, = (id : TxId, indez : Int)

Input, = (outputRef : OutputRef,,
validator : Script,
datum : Data,
redeemer : Data)

Txe = (inputs : FinSet[Input,],
outputs : List[Output,],
validityInterval : Interval[SlotNumber],
datum Witnesses : FinSup[DataHash, Data],
fee : Quantities,
forge : Quantities,
forgeScripts : FinSet|[Script])

Ledger, List[Txz]

Figure 7: Extra primitives and basic types for the EUTXO-2 model

4.1.1 Remarks

ETUXO-2 on Cardano. The Cardano implementation of EUTXO-2 uses the primitives given
in Figure 8. Cardano also defines an native currency and native currency token. This allows
defining a native currency that behaves as a simple Quantity. This is used in Fig 11.

Currencyld =
Token =
nativeC =
nativeT =

Figure 8: Cardano primitives for the EUTXO-2 model
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Quantities.  The Quantities type represents a collection of funds from a number of currencies
and their subcurrencies.

Quantities is a finitely-supported function to another finitely-supported function. This is
well-defined, since finitely-supported functions form a monoid.

4.2 The Context type for EUTXO-2

The Context type must be also be updated for the EUTXO-2 model. All that is required is to
replace Quantity by Quantities everywhere in Figure 4 except for the fee field, and to add the
monetary policy scripts: for reference the details are given in Figure 9.

Outputinfo, = (wvalue : Quantities,
validatorHash : Address,
datumHash : DataHash)

Inputinfo, = (outputRef : OutputRef,
validatorHash : Address,
datumHash : DataHash,
redeemerHash : DataHash),
value : Quantities)

Context; = (inputlnfo : List[Inputinfo,],
thisInput : N,
outputInfo : List[Outputlnfos],
validityInterval : Interval[SlotNumber],
datum Witnesses : FinSup[DataHash, Datal,
fee : Quantities,
forge : Quantities,
forgeSeripts : FinSet[Script])

mkContexts : Txo X Input x Ledger — Contexty summarises a transaction in the context
of an input and a ledger state

toDatay : Contexty — Data encodes a Contexty object

Figure 9: The Context type for the EUTXO-2 model

4.3 Validity of EUTXO-2 transactions

The validity conditions from Figure 6 must also be updated to take account of multiple currencies.
We can now adapt the definition of validity for EUTXO-1 (Figure 6) to obtain a definition
of validity for EUTXO-2: see Figure 10.

12



10.

. The current slot is within the validity interval

currentSlot € t.validityInterval

. All outputs have non-negative values

For all o € t.outputs, o.value >0

All inputs refer to unspent outputs
{i.outputRef : i € t.inputs} C unspentOutputs(l).

Forging

A transaction with a non-zero forge field is only valid if either:

(a) the ledger ! is empty (that is, if it is the initial transaction).

(b) for every key h € support(t.forge), there exists s € t.forgeScripts with scriptAddr(s) =
h.

Values are preserved

t.forge + Z getSpentOutput(i, ) = t.fee + Z o.value

ict.inputs o€t outputs
No output is double spent
If 41,19 € t.inputs and iy.outputRef = is.outputRef then i1 = is.
All inputs validate

For all i € t.inputs, [i.validator](i.datum, i.redeemer, toDataz(mkContexta(t,4,1))) = true

Validator scripts match output addresses

For all i € t.inputs, scriptAddr(i.validator) = getSpentOutput(i,1).addr

Datum objects match output hashes

For all i € t.inputs, dataHash(i.datum) = getSpentOutput(i,[).datumHash

All monetary policy scripts evaluate to true

For all s € t.forgeScripts, [s](toTxData(t)) = true

Figure 10: Validity of a transaction ¢ in the EUTXO-2 model
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4.4 Remarks

Monetary policies. Rules 4b and 10 can be used to enforce monetary policies for custom
currencies: see Note 11 for a detailed explanation.

Preservation of value over Quantities. In Rule 5, + and ) operate over Quantities, which
is a finitely-supported function (which, with their operations, are defined in Section 2.2). Preser-
vation of value in this model essentially requires that the quantities of each of the individual
currencies involved in the transaction are preserved.

Preservation of value and forging. Recall that values in forge can be negative whereas
values in outputs must be non-negative. This allows currency to be destroyed as well as created.
Rule 5 implies that a transaction is invalid if it attempts to destroy more of a currency than is
actually available in its inputs.

Validation on Cardano. Cardano adds an additional rule in Fig 11, which asserts that fees
are paid exclusively in the native currency.

Fees are paid in the native currency

support(t.fee) = {nativeC} and support(¢.fee(nativeC)) = {nativeT}

Figure 11: Validity of a transaction ¢ in the EUTXO-2 model

4.5 The EUTXO-2 model in practice.

See Briinjes and Vinogradova [2019] for examples of contracts which make use of the features of
the EUTXO-2 model. See also Notes 11 to 13 for comments on some technical aspects of the
model.

A Comments

Note 1. Computing with finitely-supported functions. We intend that finitely-
supported functions are implemented as finite maps, with a failed map lookup corresponding to
returning 0.

However, there are two apparent difficulties:

1. The domain of a map does not correspond to the support of the function: values may be
mapped to zero, thus appearing in the domain but not the support.

2. Pointwise equality is hard to compute.

However, both of these are easily ameliorated. We say that a set w is a weak support of a
finitely-supported function f if support(f) C w. That is, a weak support contains all the points
that are non-zero, but possibly also some points that are zero. It is easy to see that the domain
of a map is a weak support for the finitely-supported function it represents.

14



We can compute the support from the weak support by simply checking the function at each
value and removing those that are zero. This is potentially expensive, but we only need to do it
when we need the support, which we only do during the computation of Rule 5.

Pointwise equality between two finitely-supported functions f and g is equivalent to checking
pointwise equality only over the union of support(f) and support(g); or similarly over the union
of a weak support of f and of g. In particular, for finitely-supported functions represented as
maps, we can check pointwise equality over the union of their domains.

The same applies to checking partial ordering pointwise, which can similarly be done over
the union of the weak support.

Mathematically, most of our finiteness restrictions are not strictly required. For example,
in the EUTXO-2 model (Section 4) we could allow transactions with infinitely many monetary
policy scripts and outputs with non-finitely-supported quantities of token currencies; as long as
the number of inputs and outputs of each transaction is finite the model remains mathematically
sound. However, the finite model presented in this document is more realistic from the point of
view of real-world implementation.

Note 2. The Basic UTXO model: Outputs and scripts. There is no well-defined notion
of ownership for UTXOs. In many transactions an output will accrue to a single user who is
then entitled to spend it at a later date. However, in general the notion of ownership is more
complex: an output of a transaction might require the cooperation of several users before it could
be spent, or it might not be spendable until some other condition has been met (for example a
certain period of time may have to pass). At the extremes, an output could be spendable by
anyone, or by no-one.

In order to deal with this complexity, an output can be locked by a script? which must
be supplied with suitable evidence to unlock the output. In the basic model, each input to
a transaction comes with a walidator script which checks that the transaction is allowed to
spend the output. In order to spend an output, the transaction supplies an object of type
Data, called the redeemer, which provides evidence that the transaction has the authority to
do s0;® a process called wvalidation is then performed which checks that the redeemer satisfies
the conditions required by the validator. Before a transaction can proceed, all inputs must be
successfully validated: if one or more inputs fails to validate then the transaction is rejected.

A simple example of this is a pay-to-pubkey script, where the redeemer consists of a signature
for the current transaction produced using a private key belonging to the owner of the output.
The validator script (provided by the owner of the output) would check the signature using a
known public key: if the public key corresponds to the private key then validation succeeds,
otherwise it fails. Thus the output can only be spent by the owner of the relevant private key

See Note 6 for more information about validators in the EUTXO setting.

Note 3. Inputs and outputs. A transaction has a Set of inputs but a List of outputs. This
is for two reasons:

e We need a way to uniquely identify a transaction output, so that it can be referred to by
a transaction input that spends it. The pair of a transaction id and an output index is
sufficient for this, but other schemes are conceivable.

e Equality of transaction outputs is defined structurally. But that means that if we had two
outputs paying X to address A, then they would be equal and therefore if we kept them
in a Set one would be lost.

2In the Cardano setting, scripts are Plutus Core programs [[OHK, 2019].
3The validator plays a role similar to that of BitCoin’s scriptPubKey and the redeemer to scriptSig.
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An alternative design would be to include a unique nonce in transaction outputs (effectively:
their index in the list), and then we could use this to identify them (and distinguish them from
each other), and so we could keep them in a Set instead.

Note 4. The datum. The introduction of the datum increases the expressivity of the model
considerably. For example, one can use a datum to propagate state between transactions, and
this can be used to give a contract the structure of a finite state machine; the fact that the
datum is part of the output and not the transaction means that the state can change without
the transaction changing, which makes it easier to have an “identity” for an ongoing contract.

Note 5. Fees and Costs. Users may have to pay a fee in order to have a transaction
executed. In a public blockchain an important reason for this is to deter hostile agents from
carrying out denial of service attacks by submitting transactions which take a long time or use
excessive amounts of memory. The precise details of fees in Cardano are outwith the scope of this
document, and indeed have not been fully decided at the time of writing. However, we expect
that the fee will include a component based on the size of the transaction (including its associated
scripts), and also a so-called gas charge to cover execution costs. We will have a model specifying
the costs of individual operations during script execution; costs will be monitored dynamically
during execution, and if the gas consumed ever exceeds the amount covered by the fee then the
transaction will fail.

Note 6. Scripts and Hashes. The spendability of an output is determined by its validator,
and thus the validator for an output must be known at the time when the output is created (a
completely new validator may be created, or an existing validator may be re-used).

Conceptually the validator is part of the output, so it may be rather unexpected that Figure 2
defines the validator to be part of an input, with the output only containing the address of the
validator. The rationale for this is that a validator V for an output O is not required until O is
actually spent, which may be some time after O was created. Recall from Note 5 that the cost
of executing a transaction depends on the size of transaction, including the associated scripts.
Thus the transaction that produces the validator only pays for the size of a hash (32 bytes) and
the transaction that runs it pays for the full size of the script.

This strategy also helps to reduce on-chain storage requirements, since validators can be
stored off-chain until needed (and the presence of the hash in the output can be used to check
that the correct validator is in fact being used when validation occurs), but unspent outputs
persist on-chain in the UTXO set until they are eventually spent.

The same strategy applies to datum objects.

Note 7. Datum witnesses.  Although a datum is only recorded as a hash in a transaction
output, it is useful to be able to record the full value of the datum on the transaction that creates
an output: this allows observers to determine the full datum without it having to be kept in the
UTXO set.

This mechanism is optional, since it incurs an increase in transaction size (and hence cost),
and some clients may want to transmit the information off-chain instead to minimise these costs.

Hence there is a datum Witnesses field on transactions, which may contain mappings from
the DataHashes used in the transaction to their Data values. This information is also present in
Context.

Note 8. Datum objects in Context. In Figures 4 and 9 the Outputinfo does not include
the datum attached to the output. These may be found in datum Witnesses.
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Having access to the value of the datum allows a validator to inspect an outgoing datum, for
example to confirm that its contents are correct in some sense. This can be useful when a datum
is used to propagate information about the state of a contract to later transactions. See Briinjes
and Vinogradova [2019] for examples of this.

Note 9. Determinism of the validation process. The Context type is the only information
about the “outside world” available to a validator at the time of validation. Allowing the validator
access to this information gives the EUTXO models a considerable amount of power, as can be
seen from the example contracts in Briinjes and Vinogradova [2019]. However, it is important
not to make too much information available to the validator. The choice of the Context type
above means that the information available to the validator is essentially independent of the
state of the blockchain, and in particular, it is independent of time (note that the check that
the current slot number is within a transaction’s validity range takes place before validation is
initiated, and the slot number is not passed to the validator (although the validity range is)).
This implies that validation is determinisitic and validators can be run off-chain in order to
determine their execution cost before on-chain validation actually occurs. This helps users to
calculate transaction fees in advance and avoid the possibility of their transactions failing due
to an insufficient fee having been paid (and also avoids overpayment due to overestimating the
fees).

Note 10. Transaction lookup during validation. Note that the getSpentOutput function
of Figure 5 uses lookupTx, which could fail if the relevant transaction does not exist. However, we
only use getSpentOutput during transaction validation, and in that case Rule 3 of Figure 6 and
Rule 3 of Figure 10 ensure that all of the transaction inputs refer to existing unspent outputs,
and in these circumstances lookupTx will always succeed for the transactions of interest.

Note 11. Monetary policies for custom currencies. The new Forging rule in Figure 10
enables custom currencies to implement their own monetary policies: for example, one might
wish to place some limit on the amount of a currency that can be forged, or restrict the creation
of the currency to owners of particular public keys.

The idea is that a custom currency has a monetary policy which is defined by some script H,
and the address h = scriptAddr(H) is used as the identifier of the currency.

Whenever a new quantity of the currency is forged, Rules 4b and 10 of Figure 10 imply that
H must be contained in the forgeScripts field of the transaction, and that it must be successfully
executed; H is provided with the details of the transaction via the Data object produced by
toTxData, so it has access to the forge field of the transaction and knows how much of the
currency is to be forged and can respond appropriately.*

The advantage of this scheme is that custom currencies can be handled entirely within the
smart contract system, without the need to introduce any extra blockchain infrastructure such
as a central registry of custom currencies.

In practice some refinement of this scheme will be required in order to (a) allow re-use of
a monetary policy for different currencies, and (b) prevent unauthorised forging of a currency.
To deal with (a) we can make the monetary policy script unique by including a nonce. This
still doesn’t prevent unauthorised people from using the script H to produce currency, but this
can be prevented by, for instance, embedding a reference to an unspent output in the script and

4We do not insist that every monetary policy script in a transaction is associated with a currency which the
transaction is actually forging, so a transaction may include apparently unnecessary monetary policy scripts. The
creator of the transaction is responsible for providing the contents of the forgeScripts field and is free to include
or exclude such scripts as they see fit.
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requiring that the currency can only be forged if the referenced output is spent at the same time,
so it can only be forged once.

Note 12. Implications of the EUTXO-2 model. The EUTXO-2 model and the techniques
described in Note 11 allow us to implement fungible (normal) and non-fungible token currencies,
as well as “mixed states”:

e Standard (fungible) currencies are implemented by issuing currencies with a single Token.

e Non-fungible token currencies are implemented by only ever issuing single quantities of
many unique Tokens.

e Note that there is nothing in this model which enforces uniqueness: having multiples of a
single Token merely means that those can be used fungibly. If a currency wants to make
sure it only issues unique tokens it must track this itself. These “mixed” token currencies
can have many Tokens, but these can have more than unit quantities in circulation. These
can be useful to model distinct categories of thing where there are fungible quantities within
those, for example share classes.

Note 13. Performance issues for EUTXO-2. The EUTXO-2 model will lose some
efficiency in comparison to the EUTXO-1 model, simply because the data structures are more
complicated. This would even apply to transactions which only involve the native currency (if
there is one), since it would be necessary to check whether the Quantities contains anything that
needs to be processed. If this is a concern then one could implement a model with two types
of transaction, essentially just the disjoint union of the EUTXO-1 and EUTXO-2 transaction
types. A simple case distinction at the start of a transaction could then select either a fast
native-currency-only computation or a slower multicurrency computation. This would be harder
to maintain though.

Another optimisation would be possible if one wished to implement custom currencies but
not NFTs: since in this case every currency would only have a single token, the tokens could be
omitted and the Quantities replaced with a map from currency ids to quantities.

A more significant cost may be that we can no longer use {-# UNPACK #-} when our Quantity
type stops being a simple combination of wrappers and products around primitives, but this is
again an issue with any multi-currency proposal.
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